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Abstract

The logit model of discrete choice is generalized with respect to not only the shape of the
error distribution, but also the additive cost structure. If utilities of alternatives are
distributed according to different laws and many observations are accommodated, then a
utility maximizer is shown to be governed by the logit model with an additive cost structure
and an error distribution defined by the laws. The representation may break down in the
case where the alternatives attracting positive choice probabilities have laws featuring either
slow or fast decay, but a new result covers this situation.  1998 Elsevier Science B.V.
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1. Introduction

If alternatives carry utilities consisting of independent, Gumbel distributed terms
(which clearly may assume different values across the alternatives) and additive
costs,

˜ ˜u 5 u 2 c , u | Gumbel,i i i i

then the probability that a utility maximizer picks alternative i decays exponential-
ly with cost c . This is the so called logit model of discrete choice econometricsi
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¨(for references, see Jaıbi and ten Raa (1997). It is popular in spatial economics
and other fields. The specification of the model, featuring the Gumbel law or
distribution, and the additive cost structure, is sometimes considered restrictive. In
a recent paper, we have generalized the error component of the logit model. More

¨precisely, Jaıbi and ten Raa (1997) show that if

˜ ˜u 5 u 2 c , u | F,i i i i

where F is any distribution with a regular upper tail, then choice probabilities are
logit, provided that many observations are accommodated. In the present paper, we
attempt to rationalize the additive cost structure of the logit model. The latter is
revealed by a simple rewrite of the last expression,

u | F (.) 5 F(. 1 c ).i i i

In this paper, we investigate a generalized discrete choice model with arbitrarily
distributed utilities,

u | F ,i i

and many observations. The importance of the paper is its demonstration that even
in this completely general context, the logit model including its additive cost
structure can be retrieved. Alternatives attracting positive choice probability will
be shown to have similar tails, featuring either exponential, slow, or fast decay. In
the first case, choice probabilities are shown to be logit with additive costs, c ,i
defined by the laws, F . The choice probabilities can be viewed to be generated byi

the discrete choice model with additive costs c and error distribution F5F ,i i0

where i is any alternative attracting positive choice probability. The latter degree0

of freedom makes that costs are defined up to a translation. In the remaining cases
(slow and fast decay), choice probabilities can be represented by limiting cases of
the logit model or by new formulas presented in this paper. The generation of the
choice probabilities by distribution F and additive cost c can be considered ani

additive random utility representation of the model with different laws, F . Notei

that we derive F and c . In other words, we show that the logit model emerges ini

the very general framework defined by arbitrary laws F . For additive randomi

utility models, see, for example, Lindberg et al. (1990).
The generalized discrete choice model will be presented in Section 2. The only

restriction will be that the distributions, F , have comparable tails. In Section 3,i

this technical condition will be defined and related to the regularity concept of
¨Jaıbi and ten Raa (1997). Section 4 contains the determination of the limiting

¨choice probabilities. The theorem generalizes the result of Jaıbi and ten Raa
(1997). In Section 5, the additive cost structure is recovered whenever possible
and new results covering the remaining cases are discussed. We relate to the
applied literature in Section 6 and conclude with Section 7.
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2. The model

Outcomes are 0, 1, . . . , m. Subset I5h1, . . . , mj is the set of alternatives, such
as locations. 0 is reserved for the case of no choice by absence of information. If xi

observations are made in i[I, utility of alternative i is, assuming rational choice,

u 5 max ui ij
1#j#xi

where u are random utility values at i. By convention, u 52` if x 50. A refereeij i i

pointed out to us that this case can be excluded by assuming x $1. The randomi

utilities at i are sampled independently from a cumulative distribution function
(c.d.f.) F , and independently from the sample sizes (x ).i i

Assumption 1: hu ui[I and j[1j is a family of independent random variables.ij

For each i[I, hu u j[1j are identically distributed with c.d.f. F .ij i

Assumption 2: All c.d.f. F are continuous and have comparable tails in the sensei

of Definition 2 of Section 3.
For any numbers of observations, x5(x , . . . , x ), the probabilities of choosing1 m

alternatives i and of no choice, are defined by

P (x) 5 Phu . u , all k ± ij and P (x) 5 0i i k 0

if x±0, and by the exceptional case,

P (0) 5 0 and P (0) 5 1.i 0

To theorize about choice probabilities, we are interested in vectors of numbers
nof observations, x , n[N. The superscription randomizes the numbers of

observations, driving them to infinity. The shares of alternatives will be forced to
tend to proportions A .i

nAssumption 3: hx ui[I and n[N is a family of independent random integers withi

finite variances, independent of hu ui[I and j[Nj, and such that for every i,ij

nlim E(x ) 5 `,in→`

n
E(x )i

]]]lim 5 A [ [0, 1],m in→`
nO E(x )k

k51

nxi
]]→ 1 in probability as n → `.n
E(x) )i

Utility of alternative i is now
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nu 5 max ui ijn1#j#x i

The probabilities of choosing alternatives i and of no choice, are now defined by
n n n n nP 5 P u . u , all k ± i P 5 P x 5 0 .h jh ji i k 0

Limiting choice probabilities are defined by

nDefinition 1: p 5lim P , i50, 1, . . . , m.i n→` i

3. Tails of distributions

Since the numbers of observations go to infinity in probability, only the upper
tails of the utility distributions matter.

Definition 2: C.d.f.’s F and G have comparable tails, if

1 2 F(u)
]]]a(F, G) 5 lim
1 2 G(u)u↑sup u uG(u),1h j

is well defined. F and G are tail similar, if a(F, G) is positive and finite. F
dominates G, if a(F, G) is infinite.

In our model, alternatives have distributions with comparable tails. In extreme
¨value theory (see Jaıbi and ten Raa, 1997), a more narrow classification is relevant,

namely tail equivalence (Resnick, 1971). It should be mentioned that tail similarity
is implicit in the last reference. F and G are tail equivalent if and only if a(F,
G)51. We shall focus on the wider concept of similarity. If F and G are tail
similar, then suphuuF(u),1j5suphuuG(u),1j and a(G, F )51/a(F, G) is also
positive and finite. Therefore, similarity is a symmetric relation. Since it is also
reflexive and transitive, tail similarity is an equivalence relation and any set ^ of
distributions with comparable tails can be divided in equivalence classes of

ˆdistributions with similar tails. The set of equivalence classes, ^, is totally ordered
by the relation A defined by

ˆ ˆ ˆ ˆFAG if and only if a(F, G) , ` for some F [ F and G [ G

This statement is easily established. Reflexivity and transitivity are trivial. To
ˆ ˆ ˆ ˆ ˆ ˆestablish anti-symmetry, suppose FAG and GAF. Then, for F [F and G[G,

a(F, G),` and a(G, F )51/a(F, G),`. Hence, 0,a(F, G),`, that is, F and G
ˆ ˆare tail similar and F5G. Lastly, the order is total, because for any pair F and G

with comparable tails, either a(F, G) or a(G, F ) is finite.
Consider ^5hF , . . . , F j, of Assumption 2. It contains a nonempty subset,1 m

ˆ^ , which is the maximal element of ^ with respect to A. The c.d.f.’s of ^ areM M
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tail similar and dominate all others. ^ is called the dominant subset of ^. In theM

next section, it will be shown to attract all choice probabilities. The remainder of
¨this section is devoted to the connection with tail regularity in the sense of Jaıbi

and ten Raa (1997).
C.d.f. F has regular upper tail, if

1 2 F(u 1 c)
]]]]w (c) 5 limF 1 2 F(u)u↑sup u uF(u),1h j

¨is well defined for c$0. Jaıbi and ten Raa (1997) consider c.d.f.’s with regular
upper tails which are translations of each other, as reviewed in the introduction. In
this case,

w (c) 5 . . . 5 w (c) 5 exp(2mc).F F1 m

Here m is zero, positive, or infinite, which they refer to by slow, exponential, or
fast decay of the upper tail, respectively. In case of slow or exponential decay, all
F can be seen to be tail similar. In case of fast decay, however, the positions ofi

the c.d.f.’s, that is costs c , govern a pattern of domination,i

F AF if and only if c $ c .j i j i

Also c.d.f.’s with either slow or exponential decay and a common w-function
may feature domination, provided we leave the framework of translations or
additive costs. For example, F(u)512exp(2u) (u.0) and G(u)512exp(2u2

log u) (u.1) have regular upper tails with w (c)5w (c)5exp(2c), but a(F, G) isF G

infinite. In short, regularity and its nature bear little on similarity. Conversely,
similarity does not bear on regularity. For example, F(u)512exp(22u2sin u)

1
](u.0) and G(u)512exp[22u2sin(u1 )] (u.1) are tail similar, even equiva-u

lent in the sense of Resnick (1971), but have no regular upper tails. However, if
tail similar p.d.f.’s have regular upper tails, then their natures are the same, as the
following lemma shows.

Lemma: Tail similar c.d.f.’s either have regular upper tails with common w-
function, or no regular upper tails at all.

Proof: See Appendix A.

Corollary: All members of the dominant subset have regular upper tails with
common w-function, or no regular upper tails at all.
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4. Limiting choice probabilities

Recall I5h1, . . . , mj is the set of alternatives, ^5hF ui[Ij is the set of utilityi

c.d.f.’s associated with the alternatives, and ^ is the dominant subset. DefineM

I 5hi[IuF [^ j. Then there exists i [I . For any pair of alternatives, putM i M 0 M

a 5a(F , F ). By Assumption 2, all a are well defined. By definition ofij i j ij

domination, a is zero if i[⁄ I and positive and finite if i[I . In the latter case,ii M M0

a a 5a (k[I ).ki ii ki M0 0

Theorem: Under Assumptions 1–3, referring to Definition 1, and if o A .0,k[I kM

then

p 5 A a / o A ai i ii k ki0 0k[IM

for i[I and zero otherwise.M

Proof: See Appendix A.

Example: F (.)5F(.1c ) with F having regular upper tail. If the decay of thei i

upper tail is fast, then I 5hi[Iuc 5min c j and a 51 (i, i [I ), henceM i k[I k ii 0 M0

p 5A / o A for i[I and zero otherwise. Otherwise, I 5I and a 5limi i k M M ii u→`0k[IM

[12F(u1c )] / [12F(u1c )]5w(c ) /w(c ), hence p 5A w(c ) /o A w(c ). Ifi i i i i i i k[I k k0 0

the decay of the upper tail is slow, then w 51 and p 5A . If it is exponential, theni i
2mc

w(c)5e and p is given by the logit model. This example consolidates the threei

¨cases of the result of Jaıbi and ten Raa (1997).

5. Recovery of the additive structure of utility

Consider the generalized model of discrete choice, with laws (F , . . . , F ). All1 m

members of the dominant subset have regular upper tails with common w-function.
(Here we apply the corollary to Lemma 3 and rule out pathological c.d.f.’s.) By

¨Jaıbi and ten Raa (1997), w(c)5exp(2mc) with m zero, positive, or infinite, and
all members of the dominant subset feature slow, exponential, or fast decay of the
upper tail, respectively. In this section, we treat the nondegenerate case of
exponential decay (m positive and finite), relegating slow or fast decay of the
dominant subset members to Appendix A.

We claim that the generalized model is equivalent to the discrete choice model
with additive cost structure, F (.1c ), where i is any element of I (the index seti i 0 M0 21of the dominant subset of the generalized model) and c 52m log a . If i[I ,i ii M0

then a is positive and finite, and c is a finite real number. If i[⁄ I , then a 50ii i M ii0 0

and c is defined to be infinity. The discrete choice model with additive costi
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¨structure can be subjected to the theorem of Jaıbi and ten Raa (1997), yielding
logit limiting choice probabilities,

2mc 2mci kp 5 A e / o A e , i [ Ii i k
k[I

or, using c 5` for i[⁄ I ,i M

2mc 2mci kp 5 A e / o A e , i [ I and zero otherwisei i k M
k[IM

or, substituting the definition of c ,i

p 5 A a / o A a , i [ I and zero otherwisei i ii k ki M0 0k[IM

which are the limiting choice probabilities of the generalized model indeed. Our
claim of equivalence is completed by three arguments. First, respective c.d.f.’s of
the generalized model and the model with additive cost structure are tail equivalent
on the set of alternatives attracting positive choice probabilities. Secondly, the
representation is independent of i , up to a translation of the cost structure.0

Thirdly, the logit representation of the generalized model generalizes the discrete
choice model with additive cost structure.

To present the first argument, let i[I and compare F and F (.1c ).M i i i0

1 12mci]] ]]a(F , F (. 1 c )) 5 a(F , F )a(F , F (. 1 c )) 5 a 5 e 2mci i i i i i i i ii i0 0 0 0 0 w(c ) ei

5 1.

To present the second argument, let i [I be an alternative point of reference.1 M

Then the discrete model with additive cost structure becomes F (.1d ) withi i1
21d 52m log a . If i[⁄ I , then a 5 a 5 0 and d 5c 5`. If i[I , theni ii M ii ii i i M1 1 0

21
a 5 a a . Taking logs and dividing by 2m, d 5c 2m log a . Thisii ii i i i i i i1 0 0 1 0 1

shows that an alternative point of reference merely translates the cost structure by
addition of a constant.

To present the third argument, take F 5F(.1c ) with F featuring exponentiali i
21 21decay. Then the costs associated with F are 2m log a 52m log[w(c ) /i ii i021 2mc 2mci i0w(c )]52m log(e /e )5c 2c , that is c up to an additive constant.i i i i0 0

6. Implications for applied work

Witlox (1994) states that the most well known applications of discrete choice
models are in the area of spatial analysis, namely (i) travel demand analysis
whereby travellers pick modes of transportation, (ii) housing markets or residential
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location whereby households choose the location or community in which to rent or
buy housing of one or more types, (iii) college choice whereby students pick
schools, (iv) shopping behavior and retailing whereby shoppers pick stores, (v)
recreational behavior whereby people choose between different recreational trips,
(vi) labor participation whereby workers select job offers, (vii) choice of energy
whereby heating systems are selected, (viii) product differentiation whereby
consumers select brands or stores, and (ix) industrial location whereby firms
review alternative locations. Our theory applies to the cases where there are many
individual alternatives within discrete groups of alternatives. Of the above these
spring to mind: housing markets and product differentiation, according to an
anonymous referee. For housing markets, see Quigley (1985); Lerman (1977);
Anas (1981), (1982); Li (1977); Ellickson (1981); Anas and Chu (1984); Gabriel
and Rosenthal (1989). For product differentiation, see Anderson et al. (1992) and
the references given there.

In the literature it is assumed that the random utilities of each dwelling or each
brand or store are extreme value or, in other words, Gumbel distributed; logit
choice probabilities are derived for each dwelling or brand/store and aggregated to
obtain choice probabilities for residential locations or for store locations (or
commodity types). The implication of our theory for this work is that the resulting
spatial choice probabilities are robust with respect to the assumed random utility
distributions. In fact, as long as one is interested in aggregated choice prob-
abilities, say by location, the distributions of the error terms associated with the
underlying individual dwellings or units within locations may be any. They need
not even be translations of each other. The common assumption that utility is the
sum of a systematic component (typically the negative of either transportation
costs or the departure from an ideal point) and a random component is not
necessary at the level of individual dwellings or units, but emerges automatically
when choice probabilities across groups are evaluated. In short, a direct application
of the standard logit model to the choice of locational choice between groups of
alternatives is justified.

The criterion for grouping is arbitrary in the light of the independence of
Assumption 1. In other words, it can be driven by the issues of interest, such as
locations. However, the requirement that there are many individual units per group

¨may force some aggregation. In Jaıbi and ten Raa (1997), aggregation would be by
the cost component of utility. In this paper, aggregation would have to be applied
by the systematic component of utility. While from a pure statistical point of view
this is an issue of distributional fit, in practice the aggregation will be by a natural
measure of similarity. Theorists have been puzzled by the requirement of discrete
choice theory that alternatives must be ‘distinct.’ Debreu (1960) discusses
recordings of the same concerto with a live performance and McFadden (1974)
considers the choice between red and blue buses. Our theory can accommodate the
situation where alternatives are similar. The examples are clear candidates for
aggregation and the choice probabilities across groups can be modelled by the
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logit model, irrespective the functional form of the underlying distribution,
provided only there are many recordings of concertos or many buses.

7. Conclusion

The logit model of discrete choice can be generalized not only with respect to
the shape of the error distribution, but also the additive cost structure. If utilities of
alternatives are distributed according to different laws and many observations are
accommodated, then a utility maximizer is shown to be governed by the logit
model with c.d.f. represented by anyone of the alternatives attracting positive
choice probability and additive costs represented by the logs of the relative tail
thicknesses. The representation breaks down only if utility distributions have upper
tails which feature either slow or fast decay and are similar, but not equivalent.
(Equivalent tails admit a trivial representation of the choice model.)
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Appendix A

Proof of Lemma: Let F and G be tail similar. Then suphuuF(u),1j5

suphuuG(u),1j5b, say. If b is finite, then F and G have regular upper tails with
m 5`. Otherwise, consider for any c$0,

1 2 G(u 1 c) 1 2 G(u 1 c) 1 2 F(u 1 c) 1 2 F(u)
]]]] ]]]]]]]]]]]5

1 2 G(u) 1 2 F(u 1 c) 1 2 F(u) 1 2 G(u)

and take limits u→`. Either they exist and

w (c) 5 a(G, F )w (c)a(F, G) 5 w (c)G F F

or

1 2 G(u 1 c) 1 2 F(u 1 c)
]]]] ]]]]lim and lim do not exist. Q.E.D.

u→` u→`1 2 G(u) 1 2 F(u)

Proof of Theorem: The proof is a modification of the proof of the theorem
¨of Jaıbi and ten Raa (1997), to which we refer. The strategy is to minorate
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n ` `liminf P by P $0 and to show that P add up to unity over I . Here, undern→` i i i M
n nAssumptions 1–3, for i[I, P 5E[P (x )] withi i

x 21 xi kP (x) 5 x E F (u) P F (u) dF (u)i i i k i
k±i

u x .0k

¨This is proved by trivial modification of the proofs of Lemmas 1 and 2 of Jaıbi
and ten Raa (1997). We proceed with the proof of the theorem. Fact 1 now reads

i ias follows. For i[I , x±0 and ´[(0,1), there is a B with F (B ),1 andM ´ i ´

21C x´ i i]]]P (x) $ 1 2 exp 2 C [1 2 F (B )]xh h jjmi ´ i ´ i
o x wk k

k51

21where C 52´ log(12´) and w 5a 1´. (In the proof of this fact, define´ k ki

¯ ¯w5max a . Then 1#w ,`, since a 51 and i[I . The first inequalities arek[I ki ii M

now based on the definition of tail comparability,

i¯0 # 1 2 F (u) # v 5 (a 1 ´)[1 2 F (u)] # (w 1 ´)[1 2 F (B )] # ´k k ki i i ´

and the remainder is modified the same way.) In Fact 2, F(B ) is replaced by´
iF (B ). If follows thati ´

m
n `liminf P $ A o A a 5 A o A a 5 Pi i k ki i k ki in→` k51 k[IM

since a 50 for k[I . Fix i [I . Then, for i[M,ki M 0 M

`P 5 A a o A a a 5 A a o A ai i ii k ki ii i ii k ki0 0 0 0k[I k[IM M

add up to unity over I . Q.E.D.M

The special cases of Section 5: It remains to consider the cases where the
members of the dominant subset feature slow or fast decay. If their tails are
equivalent, then the theorem reduces to

p 5 A o A for i [ I and zero otherwisei i k M
k[IM

In this case the generalized model can be seen to be equivalent to the discrete
choice model with degenerate additive cost structure, F (.1c ), where i [I andi i 0 M0

c 50. This is done in the same way as in Section 5. If the tails are not equivalent,i

but merely similar, then the generalized model admits no representation by a
discrete choice model with additive cost structure, but the theorem must be applied
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directly to calculate limiting choice probabilities. They are proportional to the
product of the relative sample size, A , and the relative tail thickness, a . (Ani ii01 /2 1

]] ]]example is given by F 51 2 and F 51 2 .)1 21 1 u 1 1 u
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