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Abstract

Input-output analysis and neoclassical economics do not seem to mix. Neoclas-

sical economists consider input-output analysis a futile exercise in central plan-

ning or at least resent the separation between the quantity and value systems.

Conversely, input-output economists resent marginal analysis without an under-

standing of the underlying structure of the economy. In this paper I put the

perceptions upside down, by analyzing productivity. I ground the concept in the

orthodox neoclassical general equilibrium framework. Then I introduce a linear

speci�cation and use input-output analysis to derive a measure of total factor pro-

ductivity without using value shares of factor inputs. In other words, input-output

analysis has the potential to explain prices which neoclassical growth accountants

take at face value.

V.1

A Neoclassical Analysis of TFP Using Input-Output Prices

Thijs ten Raa

1. Introduction

During one of our very last discussions, Wassily Leontief asked me: �What are you doing

these days?� I replied that I reconcile input-output analysis and neoclassical economics.

He leant back, thought, looked me straight into the eyes, and said �Should be easy.�

Yet input-output analysis and neoclassical economics seem hard to mix. The resentment

between the two schools of economics is a two-way a¤air.
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Neoclassical economists consider input-output analysis a futile exercise in central plan-

ning. The relationship between the delivery of a bill of �nal goods and its requirements

in terms of gross output and factor inputs is considered mechanical, with no or little

attention paid to the role of the price mechanism in the choice of techniques (Leontief,

1941). True, input-output analysis is used to relate prices to factor costs, but here

too the analysis is considered mechanical as input-output coe¢ cients are presumed to

be �xed. To make things worse, the quantity and value analyses are perceived to be

disjunct, with no interaction between supply and demand.

Conversely, input-output economists consider neoclassical economics a futile exercise in

marginal analysis that fails to grasp the underlying structure of the economy. Firms

supply up to the point that marginal revenue equals marginal cost and set the price

accordingly. But does not marginal cost depend on all prices in the system, including

the one of the product under consideration? And if the answer is yes, should not we

take into account the interindustry relations, i.e. apply input-output analysis?

Many, including myself, have been held captive by these perceptions. Yet they are

misleading. Instead of criticizing the critiques, a meta-analysis which is doomed to have

little input, I provide some shock therapy, that puts the perceptions upside down, by

analyzing a concrete issue, namely productivity measurement. Why productivity? Well,

the standard, neoclassical measure of productivity growth, the so called Solow residual

between output growth and input growth, employs market values of labor and capital

to compute a weighted average of their input growth rates. Now it can be shown that

the Solow residual is equal to a weighted average of the growth rates of the real wage

and the real rental rate of capital. (In other words, total factor productivity growth is

the sum of labor productivity growth and capital productivity growth.) By taking the

wage rate and rental rate at market values in computing the Solow residual, neoclassical

economists accept at face value what they are supposed to measure.

In this paper I adopt the methodological position of neoclassical economics, by which

productivity is de�ned as the marginal contribution of factors inputs, but apply input-

output analysis to determine its value. The analysis is framed in the orthodox general

equilibrium model, which subsequently will be speci�ed to accommodate growth ac-

counting. I will recover the neoclassical formulas, such as the Solow residual, but the

structure of the economy will be exploited to determine the values.

2. Earlier work
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My �rst attempt to reconcile input-output and neoclassical economics is in the sequel

papers ten Raa (1994) and ten Raa and Mohnen (1994). We maximized the value of �nal

demand at world prices. Final demand for non-tradable commodities was simply �xed

at the observed level. In short, we expanded �nal demand for tradable commodities, but

not for non-tradable commodities. The model lacks a utility foundation. We recti�ed

this in ten Raa (1995) and Mohnen et al. (1997), where we maximized the level of the

entire domestic �nal demand vector, given its proportions. In ten Raa and Mohnen

(2002) we investigate not only the frontier of the economy, but also the �uctuations

of the observed economy about its frontier. All the aforementioned papers are about

small, open economies with exogenous prices for the tradable commodities. The main

contribution of this paper is that it lays out the theory for a closed economy. In other

words, we make the step from partial to general equilibrium analysis.

Subsidiary, I now present the theory from an orthodox mathematical economic per-

spective, say Debreu (1959). First and foremost, the two �practical� approaches of

input-output analysis and growth accounting are clearly embedded in a unifying frame-

work. Second, the general equilibrium framework endogenizes the value shares used

in growth accounting exercises (such as Jorgenson and Griliches, 1967). Third, the

exposition makes Debreu�s framework accessible to applied economists.

3. Growth accounting

There are two sources of growth. The �rst is that economies produce more output,

simply because they use more input, such as labor. Of course, this is a mere size e¤ect;

there is no increase of the standard of living. The second source of growth is more

interesting. Economies produce more output per unit of input, because of technological

progress. The classical exposition of these two sources of growth is Solow (1957). He

demonstrates that the residual between output and input growth measures the second

source of growth, that is the shift of the production possibility frontier. In his analy-

sis Solow makes two assumptions. First, the production function is macro-economic,

hence transforming labor and capital into a single output. Second, the economy must

be perfectly competitive, so that factor inputs are priced according to their marginal

productivities. By the �rst assumption, the output has a well de�ned growth rate. The

input growth rate, however, must be some weighted average of the labor growth and

capital growth rates; the appropriate weights are shown to be the value shares of labor

and capital in national income. The two assumptions are quite restrictive. The use of

a single output requires aggregation of commodities and makes it di¢ cult to compare
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sectors in terms of productivity performance. The notion of perfect competition is a far

cry from most observed economies.

I will show how growth accounting can be freed from these assumptions. Basically I

will work in a multi-dimensional commodity model and calculate productivities without

using observed value shares. The analysis is self contained and serves as a nice refresher

of mathematical economics. The main concepts of this branch of economics are equilib-

rium, e¢ ciency, and the welfare theorems that interrelate equilibrium and e¢ ciency. I

will review all this in the next section. To make the theory operational I will then con-

sider the linear case of the model, with constant returns to scale and nonsubstitutability

in both production and household consumption. E¢ ciency is then the outcome of a

linear program and the Lagrange multipliers of the factor input constraints measure

their productivities. Summing over endowments I obtain total factor productivity. The

analysis is shown to be consistent with the aforementioned Solow residual. Moreover,

input-output analysis will enable us to reduce total factor productivities growth rates

to sectoral productivity and thus to pinpoint the strong and the weak sectors.

4. Equilibrium and e¢ ciency

Denote the number of commodities in an economy by integer n: The commodity space

is the n-dimensional Euclidian space, Rn: A commodity bundle is a point in this space,
say y 2 Rn: Negative components represent inputs and positive components outputs.
For example, in a Robinson Crusoe economy, where (labor) time is transformed into

food, (1;�1)0 is the bundle representing 1 hour of work and a metric ounce of food. A
prime is used to indicate transposition. Denote the collection of all technically feasible

commodity bundles by Y: Y is a subset of Rn: It represents the production possibilities
of the economy. I make two assumptions on Y: First, Y is convex. This means that if

y and z belong to Y; then so does �y + (1� �)z for any � between 0 and 1. Although
the assumption is always made in general equilibrium analysis, it is not innocent. It

rules out increasing returns to scale. Second, Y is compact. In the context of our

Euclidian commodity space this means that Y is bounded and closed. In the literature

this assumption, namely the boundedness, is relaxed, but at the expense of uninteresting

complications.

In a perfectly competitive economy producers pick the production plan that maximizes

pro�t given the prices. Denote the commodity prices by vector p and let a prime denote

transposition. The pro�t of any production plan y is then given by p0y since inputs
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have negative signs in y. p0y is the inner product of p and y: �ni=1piyi: Here the positive

terms represent revenue and the negative terms cost. Now maximize p0y by choosing

y: The solution will depend on p and, therefore, is denoted y(p): Formally,

y(p) = argmax
y2Y

p0y

Given p; producers �supply�y(p): Strictly speaking only the positive components rep-

resent supply, while the negative components represents business demand, as for labor.

I de�ne supply as the mapping y(�): This constitutes one side of equilibrium analysis.

Turn to consumers. For simplicity I assume there is only one utility function, u; so

consumers have the same preferences. For a commodity bundle y; the real number

u(y) represents the utility it yields to the consumers. Utility is essentially ordinal.

Comparing commodity bundles y and z; what matters is if u(y) > u(z); u(y) < u(z);

or u(y) = u(z); but the absolute di¤erence between the utility levels is immaterial. In

fact, the entire analysis will be una¤ected by a monotonic transformation of the utility

function. I make three assumptions on u: First, u is continuous. This is an innocent,

technical assumption, that can be shown to be implied by the other assumptions, using

a monotonic transformation. The second assumption is that u is increasing. This means

that more is preferred. Third, u is quasi-concave. This is de�ned by the condition that

the preferred set, fyju(y) > constantg is convex. It means that consumers prefer convex
combinations.

In a perfectly competitive economy consumers pick the commodity bundle that maxi-

mizes utility subject to the budget constraint and given the prices. What is the budget

constraint? For a moment, ignore dividends, so that all income stems from labor. In

the framework of Robinson Crusoe�s economy, the question is when y = (�h; f)0 is
�nancially feasible. (Here h is hours worked and f is amount of food.) If p2 is the price

of good and p1 the price of labor time, then the answer is p2f 6 p1h, which can be

written brie�y as p0y 6 0: The budget constraint is basically zero, because the com-

modity bundle has a negative component that generates (labor) income. In a private

enterprise economy, pro�t, p0y(p); supplements the budget constraint and consumers

solve the following optimization problem

max
y
u(y) subject to p0y 6 p0y(p)

The commodity bundle that comes out of this is what consumers �demand.� (The

positive components represent demand, the negative components household supply, as
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of labor.) I de�ne demand as the mapping from prices p to the commodity bundle that

solves the consumers�problem.

Now we have all the building bricks and can proceed to de�ne the main concepts of

mathematical economics, namely equilibrium and e¢ ciency. Conceptually, they are

very di¤erent. Equilibrium requires a price system; it is de�ned by the equality between

demand and supply. Since the latter are both mappings from prices to commodity

bundles, equilibrium is de�ned formally as a price vector, p�; such that supply and

demand assume a common value. Equilibrium is a positive concept, to describe what

actually happens in market economies, without saying it is good or bad. Statements on

the performance of an economy, however, are normative and require no price mechanism.

Suppose we want to compare a centrally planned economy to a decentralized market

economy. The centrally planned economy may have no price system at all. Still we

want to evaluate which one performs better. This is a matter of utility. We say one

economy is better than another if it attains a higher utility level for the consumers.

An economy is e¢ cient if it obtains the maximum utility level that is technologically

feasible. Since utility is de�ned on commodity bundles, e¢ ciency is de�ned formally

by a commodity bundle, y�; such that utility is maximized over Y :

y� = argmax
y2Y

u(y)

Notice the conceptual di¤erence between equilibrium and e¢ ciency. The former is given

by a price vector, the latter by a commodity bundle. An equilibrium equates supply

and demand, but makes no statement on the level of utility. E¢ ciency promotes utility,

but requires no price system.

Although the concepts are very di¤erent, there is a deep, close relationship for perfectly

competitive economies. By de�nition, an economy is perfectly competitive if no producer

or consumer can manipulate the prices, but considers them as given. It can be claimed

that the commodity bundle generated by the equilibrium price vector is e¢ cient. In

short, an equilibrium is e¢ cient. This statement is called the �rst welfare theorem. I

also claim that an e¢ cient commodity bundle can be generated by an equilibrium price

vector. In short, an e¢ cient allocation is an equilibrium. This statement is called the

second welfare theorem. The two welfare theorems are deep and must be proved.

The proof of the �rst welfare theorem is relatively easy. We must show that an equi-

librium, say p�; generates an e¢ cient allocation, y(p�): The proof is by contradiction.
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Suppose y(p�) is not e¢ cient. By de�nition of e¢ ciency there exists y 2 Y such

that u(y) > u(y(p�)): By de�nition of demand it must be that y is too expensive:

p�0y > p�0y(p�): By de�nition of supply it must be that y is not feasible: y =2 Y: This
contradicts the de�nition of y: The supposition that y(p�) is not e¢ cient is therefore

not tenable. This completes the proof that an equilibrium is e¢ cient.

The proof of the second welfare theorem proceeds as follows. Let y� be e¢ cient, hence

maximize u(y) over Y: Then we must construct an equilibrium price system that gen-

erates it. Consider the feasible set, Y; and the preferred set, fy 2 Rnju(y) > u(y�)g:
By e¢ ciency of y�; the sets do not intersect. By assumptions on production and utility,

the two sets are convex. Now we invoke Minkowski�s separating hyperplane theorem,

by which two convex sets that do not intersect can be separated by a hyperplane. (See,

for example, Rockafellar, 1970). Hence there exists a row vector, say p�; such that

p�0y1 > p
�0y2

holds for all y1 2 fy 2 Rnju(y) > u(y�)jg and y2 2 Y . I claim p� is an equilibrium. For
this we must show that given p�; y� is supplied and demanded. First consider supply.

Since utility is increasing, the above inequality yields for any " > 0 (in Rn)

p�0(y� + ") > p�0y; y 2 Y:

Hence p�0y� > p�0y; hence y� maximizes pro�t and, therefore, is supplied: y� = y(p�):
Next consider demand. If y is superior to y�; u(y) > u(y�); then it is out of the budget,

p�0y > p�0y� = p�0y(p�): Hence y� maximizes utility subject to the budget constraint

and, therefore, is demanded. This completes the proof that an e¢ cient allocation is an

equilibrium.

So far, I have remained silent about existence. Does an equilibrium exist? The usual

analysis to �nd an intersection point of supply and demand is by means of a so called

�xed point theorem. This is di¢ cult. We make a shortcut. It is easy to see that an

e¢ cient allocation exists. All we have to do is to maximize utility, u over the feasible set,

Y: Since u; is continuous and Y is compact, a maximum exists, say y�: By the second

welfare theorem it is an equilibrium, say p�: Hence an equilibrium exists.

In the literature all sorts of variations on the above analysis are found. More com-

modities, more products, more consumers, you name it. The basic structure, however,

remains the same. Equilibrium is de�ned by the equality of supply and demand, e¢ -

ciency by the impossibility to raise the utility level further, and the two are related by



8

the �rst and second welfare theorem provided convexity assumptions hold and agents

are price takers. Then competitive prices can be analyzed by studying the e¢ ciency

problem, where utility is maximized over the feasible set. For example, the well-known

statement that competitive economies reward factor inputs according to their produc-

tivities can be demonstrated. This will be done in the next section for linear economies.

5. E¢ ciency and productivity

The model of the last section is quite general, at least in terms of functional forms. I

now add the �esh and blood of linear economics, including input-output analysis. Let

there be m activities. Denote an m � n-dimensional matrix of outputs by V and an

n � m-dimensional matrix of inputs by U. Add an m-dimensional vector of capital
inputs, k > 0; and similarly for labor, l > 0: Assume every activity requires positive

factor input (ki and li not both zero). Let the economy be endowed with a capital stock

k and labor force l: Let

Y = fy 2 Rnjy 6 (V0 �U)s; k0s � k; l0s 6 l; s > 0g

where s 2 Rm is the vector listing m activity levels. Then Y is an example of a

production possibility set as we de�ned it in Section 3. Y is the intersection of a

number of half-spaces, which is obviously convex. The assumption that every activity

requires factor input ensures that Y is compact.

The modelling of household consumption is similar. Denote an n-dimensional vector of

consumption coe¢ cients by a > 0: Then for y > 0;

u(y) = min yi=ai

is the Leontief utility function. (I choose this utility function, because it enables us

to substitute observed consumption values in the Total Factor Productivity growth

expression of the next section.) Basically consumers want their bundle in the proportions

of a; say ca; where c is a scalar. It is easy to see that

u(y) = max
ca6y

c

Proof. First we prove u(y) > max
ca6y

c: For all y > ca; u(y) > u(ca) = c: Hence also

u(y) > max
ca6y

c: Next we prove the converse. At least one constraint in max
ca6y

c is binding:

ajc
� = yj for some j; where c� is the constrained maximum. Now u(y) = min yi=ai 6

yj=aj = c
� = max

ca6y
c: This completes the proof.
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We have production and utility, so we can set up the e¢ ciency problem,

max
y2Y

u(y)

Using the alternative formulation of the utility function, we can rewrite the e¢ ciency

problem as

max
s;y;c

c subject to ca 6 y and y 2 Y:

Notice that both the objective and the constraints are linear in the variables. The

e¢ ciency problem of a linear economy is a linear program. The linear program can be

simpli�ed slightly by eliminating one of the variables, y:

max
s;c
c subject to ca 6 (V0 �U)s; k0s 6 k; l0s 6 l; s > 0

This linear program maximizes the level of �nal consumption subject to the material

balance, the capital and labor constraints, and a nonnegativity constraint. Another,

succinct formulation of the linear program, is

max(00 1)

�
s

c

�
subject to

266664
U�V0 a

k0 0

l0 0

�I 0

377775
�
s

c

�
6

266664
0

k

l

0

377775
In general, when we max f(x) subject to g(x) 6 b; the �rst order conditions are f 0 = �g0;
� > 0: Here f 0 is the (row) vector of partial derivatives @f=@xi of f: If g is scalar valued,
g0 is also the row vector of partial derivatives @g=@xi. If the constraints are given by

G(x) 6 b, with G vector valued, the �rst order conditions are f 0 = �0G; � > 0, where
G is the Jacobian matrix of partial derivatives (i.e. element gij of matrix G equals

@gi(x)=@xj.)

[See Word doc for graph.]

The �rst order conditions re�ect the tangency of the isoquants of the objective and

constraint functions. In the picture f and g grow in the same direction (the North-East),

hence � > 0: If � were negative, then f and g would grow in opposite directions and

one could simply increase f by wandering into the feasible region (g would be reduced).

� is called the Lagrange multiplier. Because f 0 = �g0; and g(x) 6 b; � measures the

rate of change of the objective function with respect to the constraint. If b is relaxed
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by one unit, then f goes up by � units. If G is vector valued, then each constraint has

a Lagrange multiplier and � is a vector of Lagrange multipliers.

In our linear program, f
�
s

c

�
= (00 1)

�
s

c

�
and f 0 = (00 1): Also,

G

�
s

c

�
=

266664
U�V0 a

k0 0

l0 0

�I 0

377775
�
s

c

�
and G =

266664
U�V0 a

k0 0

l0 0

�I 0

377775 :

The constraints are the material balance, the capital constraint, the labor constraint,

and the nonnegativity constraint. It is customary to denote the Lagrange multipliers

by p; r; w; and �; respectively. The �rst order conditions, f 0 = �0G; � > 0 read

(00 1) = (p0; r; w; �0)

266664
U�V0 a

k0 0

l0 0

�I 0

377775 ; (p0; r; w; �0) > 00

The second component, p0a = 1; is a price normalization condition. The �rst component,

00 = p0(U�V0)+ rk0+wl0��0; can be rewritten as p0(V0�U) = rk0+wl0��; � > 0;
or

p0(V0 �U) 6 rk0 + wl0

On the left hand side we �nd value-added and on the right hand side factor costs, for

the respective activities.

p; r and w are the perfectly competitive equilibrium prices. I am going to demonstrate

this by means of the so called phenomenon of complementary slackness. Let me explain

this phenomenon in terms of max f(x) subject to G(x) 6 b. The �rst order conditions
are f 0 = �0G; � > 0: The phenomenon says that if a constraint is non-binding, gi(x) < bi;
then the Lagrange multiplier is zero, �i = 0: Hence gi plays no role in the �rst order

condition. The phenomenon also says, that if a Lagrange multiplier is strictly positive,

�i > 0; then the constraint is binding, gi(x) = bi: A nice way to write the phenomenon

of complementary slackness is

�0[G(x)� b] = 0:
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The left hand side is the inner product of two nonnegative vectors. It is zero if and only

if each term of the inner product is zero: �i[gi(x)� bi] = 0: This, indeed, is a short way
of writing gi(x) < bi ) �i = 0 and �i > 0) gi(x) = bi:

Now I explain why the Lagrange multipliers are competitive prices. Suppose that for

some activity value-added is strictly less than factor costs. Then �i > 0: By the phenom-

enon of complementary slackness, si = 0: Hence the price system is such that negative

pro�ts signal activities that are inactive in the coe¢ cient allocation. If the economy

would have this price system and producers are pro�t maximizers, they would under-

take precisely those activities which we want them to do. Notice that pro�ts would be

zero: The unpro�table activities are inactive, and value-added is everywhere less than

or equal to factor costs.

There is another interesting consequence of the phenomenon of complementary slackness,

namely the identity between national product and national income. If G is linear,

G(x) = Gx and the last equation becomes

�0Gx = �b

By the �rst order condition, f 0 = �0G;

f 0x = �b

If f is also linear, this reads

f(x) = �b

In our linear program,

(00 1)

�
s

c

�
= (p0; r; w; �0)

266664
0

k

l

0

377775
or

c = rk + wl

This is the famous macro-economic identity of the national product and national income.

It con�rms that Lagrange multipliers measure the rate of change of the objective function

(consumption level c) with respect to the constraints (capital k and labor l): If the stock
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of capital is increased by a unit, then the contribution to the objective is r: Hence r

measures the productivity of capital. Similarly w measures the productivity of labor.

r and w need not be the observed prices of capital and labor, but are the Lagrange

multipliers of the e¢ ciency program, also called shadow prices. For perfectly competitive

economies, however, there is agreement.

6. Total factor productivity

Capital productivity is r and labor productivity is w where r and w are the shadow prices

of the linear program that maximizes consumption subject to the material balance, the

capital constraint, the labor constraint, and the nonnegativity constraint. Now let

time evolve. Everything changes, not only the output levels, but also the technical

coe¢ cients and the consumption coe¢ cients. The linear program changes. r and w

change. Hence there is capital productivity growth, _r = dr=dt; and labor productivity

growth, _w = dw=dt: All this is per unit of capital or labor. Total capital productivity

growth is _rk and total labor productivity growth is _wl: Normalizing by the level, we

obtain the nominal total factor productivity growth rate, ( _rk+ _wl)=(rk+wl). To obtain

it in real terms we must subtract the price increase of the consumption bundle,
�
pa. The

(real) total factor productivity growth rate is

TFP = ( _rk + _wl)=(rk + wl)� �
pa:

Here k and l are the factor constraints and r and w their Lagrange multipliers; a

is the vector of consumption coe¢ cients. Although this productivity growth concept

is grounded in the theory of mathematical programming (where Lagrange multipliers

measure productivities of constraints), there is perfect consistency with the traditional

Solow residual. Recall the macro-economic identity of the national product and national

income, c = rk + wl. divandiding though by the identity itself, we obtain Total

di¤erentiation yields _rk + _wl = _c� r _k � w _l and division by the identity itself leads to

TFP = _c=c� �
pa� r _k=(rk + wl)� w _l=(rk + wl)

If we use shorthand ĉ = _c=c for a relative growth rate, we obtain

TFP = ĉ� �
pa� �kk̂ � �l l̂

where �k = rk=(rk+wl); the competitive value share of capital, and �l = wl=(rk+wl);

the competitive value share of labor. The right hand side of the last equation is precisely
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the Solow residual. Notice, however, that the competitive value shares are not necessarily

the observed ones. For noncompetitive economies, they must be calculated by means of

the linear program of Section 4; for an application see ten Raa and Mohnen (2000).

7. Input-output analysis of total factor productivity

By de�nition, positive TFP-growth means that output grows at a faster rate than input

and, therefore, that the output/input ratio or standard of living goes up. In this section

I will explain the phenomenon in terms of technical change at the sectoral level.

The linear program selects activities to produce the required net output of the economy.

In continuous time we may consider in�nitesimal changes and the pattern of activities

that are actually used is locally constant (except in degenerate points where the linear

program has multiple solutions). In this section we ignore the activities that are not

used. Hence, activity vector s is and remains positive.

From the last section, the Solow residual is

TFP = _c=c� �
pa� r _k=(rk + wl)� w _l=(rk + wl) = ( _c� �

pac� r _k � w _l)=c

. We are going to express c; k and l in terms of s: By complementary slackness between

ca 6 (V0�U)s and p > 0 we have cp0a = p0(V0�U)s, or, using the price normalization
condition,

c = p0(V0 �U)s

Assume that capital and labor have positive productivity. Then, also by complementary

slackness,

k = k0s; l = l0s

Substitution yields

TFP = f[p0(V0 �U)]� � r _k0 � w_l0gs=c� �
pa+ [p0(V0 �U)� rk0 � wl0]_s=c

Since s remains positive, by complementary slackness, p0(V0 �U) =rk0 � wl0; and the
second term vanishes. It is customary to de�ne TFP-growth of sector i as output growth

minus input growth, normalized by output:

TFPi =
[p0(V0 �U)�]i � r _ki � w _li

(p0V0)i
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It then follows that

TFP =
P
i

(p0V0)iTFPisi=c+ [ _p
0(V0 �U)s� �

pac]=c

=
P
i

diTFPi

where di = (p0V0)isi=p
0(V0 �U)s and the remainder vanishes because of the material

balance, assumed to be binding. These weights di are called Domar weights and sum to

the gross/net output ratio of the economy, which is greater then one.

To see the reduction of TFP-growth as reductions of input-output coe¢ cients in the

traditional sense, consider the case where sectors produce single outputs. Then

TFPi = (pi _vij(i) �
P
j

pj _uji � r _ki � w _li)=(pivj(i))

In this case input coe¢ cients are de�ned by aji = uji=vij(i); �i = ki=vij(i) and �i =

li=vij(i): Substitution yields

TFPi = [pi _vij(i) �
P
j

pj(ajivij(i))
� � r(�ivij(i))� � w(�ivij(i))�]=(pj(i)vij(i))

By complementary slackness, pivij(i) =
P
j

pjajivij(i) � r�ivij(i) �w�ivij(i) and we obtain

TFPi = (�
P
j

pj _aji � r _�i � w _�i)=pj(i);

that is sectoral cost reductions. With obvious matrix notation,

TFP = �
P
i

di(p
0 _ai � r _�� w _�)=pj(i)

is reduced to reduction in input-output coe¢ cients. If there is only one sector producing

each commodity, then j(i) = i: If sectors produce multiple outputs, then the result

basically holds, but input-output coe¢ cients are no longer obtained by simple scalar

divisions.

8. Conclusion

For perfectly competitive economies there is an intimate relationship between e¢ ciency

and equilibrium. The marginal productivities of capital and labor that are the Lagrange

multipliers to the e¢ ciency program coincide with perfectly competitive equilibrium

prices. For such economies one can measure TFP-growth by means of the Solow residual,

using the observed value share of the factor inputs. Most economies, however, are
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not perfectly competitive. Then, to measure productivities, one must �nd the shadow

prices of the factor inputs by solving a linear program. In this paper I proposed the

linear program that maximizes Leontief utility subject to resource constraints. We thus

obtained a Solow residual measure for TFP without assuming that the economy is on

its frontier. The �ipside of the coin is that the numerical values we use in the residual

re�ect shadow prices instead of observed prices. The data required for the determination

of TFP are input-output coe¢ cients and constraints on capital and labor. These data

capture the structure of the economy and are real rather than nominal. Our measure

of TFP-growth, �rmly grounded in the theory of mathematical programming, admits

a decomposition in sectoral contributions, allowing us to pinpoint the strong and the

weak sectors of the economy.

We have freed neoclassical growth accounting from its use of market values of factor

inputs in the evaluation of the Solow residual and, therefore, some circularity in its

methodology. Perhaps surprisingly, we accomplished this by using input-output analy-

sis to determine the values of factor inputs. Input-output analysis and neoclassical

economics can be used fruitfully to �ll gaps in each other. Contrary to perception, the

gap in input-output analysis is not the interaction between prices and quantities, but

the concept of marginal productivity, and the gap in neoclassical economics is not the

structure of the economy, but the determination of value shares of factor inputs.
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