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PROBLEMS AND SOLUTIONS

EpITED BY MURRAY S. KLAMKIN

COLLABORATING EDITORS: HENRY E. FETTIS CECIL C. ROUSSEAU
YUDELL L. LUKE OTTO G. RUEHR

All problems and solutions should be sent, typewritten in duplicate, to Murray S. Klamkin, Department
of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2GI. An asterisk placed beside a
problem number indicates that the problem was submitted without solution. Proposers and solvers whose
solutions are published will receive 10 reprints of the corresponding problem section. Other solvers will receive
Jjust one reprint provided a self-addressed stamped (U.S.A. or Canada) envelope is enclosed. Proposers and
solvers desiring acknowledgment of their contributions should include a self-addressed stamped postcard (no
stamp necessary outside the U.S.A. and Canada). Solutions should be received by February 15, 1984.

PROBLEMS

Two Legendre Polynomial Identities
Problem 83-16, by A. D. RAWLINS (Brunel University, Middlesex, UK).

Show that
(1) P,,{X(Xz _ a2)—1/2} =(—_—:)‘(X2 _ a2)(n+1)/2d_n(x2 _ a2)—l/2’ nz= 0’
n dx
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A System of Probabilistic Inequalities

Problem 83-17*, by T. TEN RAA (Erasmus University, Rotterdam, The Netherlands).
Consider n locations, n = 2:
00...0...0...0.
1 2 i J n
Initially, there is one particle at each location. Then there are two consecutive transitions,
governed by real nonnegative matrices (p;) and (x;), respectively. Thus p; is the
probability that the particle which is originally at location i will move to j in the first
round. Similarly, x;; is the probability that a particle which after the first round is at
location i will move to j in the second round.
It is assumed that the system is shaky. More precisely, all particles move with
certainty in both rounds. Furthermore, in the second transition any particle has a positive
probability to reach any other location. Formally,

(1 pi=0, p;>0 forsomej#i, i=1,-+.,n,
(2) x; =0, x;>0 forallj#i, i=1,--.,n
(It is not necessary to assume that transition probabilities add up to unity.)

Consider the particle which originates from any location i. The probability that it

569



570 PROBLEMS AND SOLUTIONS

ends up at location j is 2_3_, puXs. Now suppose that the system is so shaky that our
particle is at least as likely to end up in any other location j as to return to its origin i:

(3) D PuXyZ Y paxy forallj£1, i=1,---,n
k=1 k=

It is conjectured that this is impossible: the real nonnegative system (1), (2) and 3)is
inconsistent. In other words, some particle must be more likely to return than to end up at
some other location.

This problem arose in an attempt to extend a generalization of Kakutani’s fixed point
theorem to certain unbounded regions.

An Infinite System of Differential Equations

Problem 83-18*, by T. D. ROGERS (University of Alberta).

M. von Smoluchowski [1] obtained the differential system

e _ > a;N,N;, = Ny )_ayN,

dt i+j=k Jj=1
in the analysis of the coagulation of colloidal particles as a consequence of Brownian
motion. The physically implausible assumption that a;; — constant enables one to derive a
solution in closed form. Can anything be said about the form of the solutions in the more
general case? Even the cases a;, = g, or a; = a; would be of interest. This equation has had
recent application as a model for cell aggregation kinetics, and related numerical work
has been carried out by T. D. Rogers and J. R. Sampson [2], [3].
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Properties of an Operator

Problem 83-19*, by P. SCHWEITZER (University of Rochester).
Determine whether or not the operator T: EN®+ — ENR*

N
a, + Z M(r)ijxjr
Jj=1

R N ’
1, Z by |au + Z M(k)ilxlk”
k=1 [

(where a;, =z 0, b, > 0, M(r),; = 0, Spr M(r) < 1,V r, i, j) (Spr = Spectral radius) is a
contraction operator in some norm, or a n-step contraction operator for some n.
(Empirically, T has a unique fixed point x* and 7"x — x* geometrically for any x.)

Remark. for the special case R = 1, T is a contraction operator. T reduces to
(suppressing the index r or k)

(Tx)ir =

max

1 N
(Tx)i=min E’ai-'—ZIMi‘,xj’ 1=i=N
i j=
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