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Abstract

An agent makes a discrete choice between alternatives. The alternatives are grouped, so
that systematic utility differences occur between groups. Within groups, utility levels are
random, based on a distribution F. For large groups, the behavior of the agent is shown to
be governed by the logit model or its limiting cases. The cases are related to a classification
of distributions by decay speed of the upper tail. The connections with the types of extreme
value theory and elements of spatial economics are discussed.  1998 Elsevier Science
B.V.
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1. Introduction

A common approach in spatial economics is the following. The probability of
choosing a destination i [ I 5 h1, . . . , mj (a shopping center, say), is proportional
to its attractivity, A (the number of shops at i, say), but decays with the distancei

to i, or, more precisely, the associated (travel) cost, c , according toi

2mc 2mci kp 5 A e YO A ei i k
K[I
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where m is a nonnegative parameter trading off the two effects. (m is estimated
econometrically.) The formula is the so called logit model, modified by attrac-
tivities A . The purpose of this paper is to understand it in the context of neti

surplus or, for short, utility maximization. Utilities are indirect, with prices given.
It is well known that if the utilities of alternatives i are

˜ ˜u 5 u 2 c , u | Fi i i i

with F the double exponential or so called Gumbel distribution (Resnick, 1987),
common to all i, the above choice probabilities can be derived. This result is
special. It is not difficult to prove that any other utility distribution would yield a
different formula for the choice probabilities (Yellot, 1977). Yet the logit model is
popular with empirical researchers and theorists continue to come to grips with it.
Spatial economic theory contains two elements underpinning the above logit
model. First, if there is no spatial differentiation (in preferences, technologies and
endowments of an economy), then the Spatial Impossibility Theorem (Starrett,
1978) says that no competitive equilibrium has positive total transport cost. In the
context of urban land use, this means that agents concentrate choices in one
location or disperse them uniformly (Fujita, 1985, p. 138). A recent description of
the phenomenon is in (Ciccone and Hall, 1996, p. 59): ‘‘How can states or
countries be in equilibrium with different densities?’’ They proceed to argue that
under neoclassical assumptions density should be equal everywhere or concen-
trated in a single county, depending on their returns to scale parameter. These
cases correspond to the limiting cases of the logit model, m 50 and m 5`,
respectively. Second, if there is spatial differentiation, distance is thought to effect
choices in exponential decay fashion (Tomlin and Tomlin, 1968; Domencich and
McFadden, 1975). This case corresponds to the proper logit model, with m

positive and finite. This paper will formulate and prove the two elements in a
concise and general setting. Error distribution F will have no specific functional
form and we will proceed to accommodate multiple observations in the framework
described above.

Our analysis contributes to discrete choice theory (Train, 1980; Ben-Akiva and
Lerman, 1985; Anderson et al., 1992, and references given there) by offering an
asymptotic foundation to the logit model. It shows that the logit model emerges
when the sample size becomes large, much as the Normal distribution emerges
when normalized sums are taken over large numbers of terms. In a way one could
say that our theorem can be used as a counterpart to a well known usage of the
central limit theorem, signifying the logit model in the context of discrete choice
rather than the normal distribution in the admittedly more widely applicable
context of summation.

Section 2 presents the model. A decision maker observes different times within
alternatives and then chooses the alternative where a utility realization is
maximum. Not surprisingly, qualitative behavior of the upper tail of the utility
distribution matters. Section 3 classifies distributions by the nature of the upper
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tail. Section 4 presents the main result: discrete choice is shown to be governed by
the logit model or its two limiting cases when the numbers of observations are
large. The pertinent classification of utility distributions by tail nature is new and,
surprisingly, does not agree with the classification of extreme value theory. This is
explained in Section 5. We relate to the applied literature in Section 6 and conclude
with Section 7.

2. The model

Outcomes are 0, 1, . . . , m. Subset I5h1, . . . , mj is the set of alternatives, such
as locations. 0 is reserved for the case of no choice by absence of information. It
accommodates zero purchases, for example when there is some threshold
opportunity value as discussed by Perloff and Salop (1985). If x observations arei

made in i[I, net utility of alternative i is, assuming rational choice,

u 5 max u 2 ci ij i
1#j#xi

where u are random utility values at i and c is a systematic effect associated withij i

i, such as search or travel cost. By convention, u 52` if x 50. We assume thati i

the random terms are drawn independently from cumulative distribution function
(c.d.f.) F, which is common to alternatives i[I.

Assumption 1: hu ui[I and j[Nj is a family of independent and identicallyij

distributed random variables with c.d.f. F.

Assumption 2: C.d.f. F is continuous and has regular upper tail in the sense of
Definition 2 of Section 3.

The assumption of continuity can be dispensed. It spares the trouble of making
choice multi-valued when alternatives have equal net utility with positive
probability, and letting these complications wash out in the asymptotic analysis,
and it spares a separate treatment of distributions with bounded support. The
assumption of regularity is a technical requirement. It excludes pathological
distributions.

For any numbers of observations, x5(x , . . . , x ), the probabilities of choosing1 m

alternatives i and of no choice, are defined by

P (x) 5 Phu . u , all k ± ij and P (x) 5 0i i k 0

if x±0, and by the exceptional case,

P (0) 5 0 and P (0) 5 1.i 0
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Under Assumptions 1 and 2, Phu 5u .2`, some k±ij50, and, therefore,i k
mo P (x)51. In fact,i50 i

Lemma 1: Under Assumptions 1 and 2, for i[I,

x 21 xi kP (x) 5 x E F(u) P F(u 1 c 2 c ) dF(u).i i k i
k±i

u x .0k

Proof: See Appendix A.

Numbers of observations are now assumed to become larger and larger and to
approach certain proportions.

nAssumption 3: hx ui[I and n[Nj is a family of independent random integersi

with finite expectations, independent of hu ui[I and j[Nj and such that for everyij

i,

nlim E(x ) 5 `,in→`

n
E(x )i

]]]]lim 5 A [ [0, 1],m inn→` O E(x )k51 k

nxi
]] → 1 in probability as n → `.n
E(x )i

A sufficient condition for the third part of Assumption 3 is in Appendix A. The net
utility of alternative i is now

nu 5 max u 2 c ,i ij in1#j#x i

and the probabilities of choosing alternatives i and of no choice are now defined
by

n n nP 5 Phu . u , all k ± ij,i i k

n nP 5 Phx 5 0j.0

m nUnder Assumptions 1 and 2, o P 51. In fact,i50 i

Lemma 2: Under Assumptions 1, 2 and 3, for i[I,

n nP 5 E[P (x )]i i

nwhere P (x ) is given by Lemma 1.i
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Proof: See Appendix A.

The purpose of the paper is the determination of the limiting choice prob-
abilities,

nDefinition 1: p 5lim P , i 5 0,1, . . . ,m. Observations contain all relevant in-i in→`

formation and are exogenous to the individual, with the distribution being a
frequency device to the observer. The limit of infinite observation size is merely a
mathematical approximation to the notion of a large, yet fixed vector of
observations. It is for this reason that our model of discrete choice constitutes no
more than an asymptotic theory.

3. Tails of distributions

Since the numbers of observations go to infinity in probability, only the upper
tail of the utility distribution matters. We shall classify distributions by decay
speed of the upper tail: slow, exponential or fast.

Definition 2: C.d.f. F has regular upper tail, if

1 2 F(u 1 c)
]]]]w(c) 5 lim

1 2 F(u)u↑suphu uF(u),1j

is well defined for c$0.

Lemma 3 will prove that w must essentially be an exponential decay function,
w(c)5exp(2mc), including the limiting cases of no decay (m 50), defined by
w(c)51, and of sudden decay (m 5`), defined by w(0)51 and w(c)50 (c.0).
With this convention,

Lemma 3: If w(c) is well defined for c$0, w(c)5exp(2mc) with m zero, positive
or infinite. If m is zero or positive, w(c) is also well defined for c,0 and the
equality holds.

Proof: See Appendix A.

Lemma 4 will prove that m must essentially be the limit of the hazard rate of F.
The hazard rate at u is the probability density of being (only) u, conditional on
being at least u:

Definition 3: The hazard rate at u of c.d.f. F with support unbounded above and
probability density f, is defined by
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f(u)
]]]r(u) 5 .
1 2 F(u)

Lemma 4: For a c.d.f. F of Definition 3,
u1c

1 2 F(u 1 c)
]]]] 5 exp 2 E r(v) dv ,3 41 2 F(u)

u

and if r has limit m, be it zero, positive or infinite, then it fulfils

w(c) 5 exp(2mc)

where the left-hand side is given by Definition 2.

Proof: See Appendix A.

We use m, be it the limit of the hazard rate or, if the latter does not exist, the
element on the right-hand side of Lemma 3 with the left-hand side given by
Definition 2, to classify p.d.f.’s with regular upper tails.

Definition 4: A c.d.f. with regular upper tail features slow, exponential or fast
decay (of the upper tail), if m of Lemma 3, is zero, positive or infinite,
respectively.

To classify a c.d.f. according to Definition 4, Lemma 4 is practical. A stronger
sufficient condition is the following. If log(12F ) is convex (concave) near
infinity, then F features slow or exponential (fast or exponential) decay. A weaker
condition is the following. F with support unbounded above (see otherwise
Example 2 below), features exponential (slow) decay, if and only if 12F +log is
regularly (slowly) varying at infinity. A definition and representation of regular
(slow) variation are given in, for example, (Feller, 1971, p. 282), but verification
does not seem to simplify a direct check of Definitions 2 and 4.

3.1. Examples

(1) For b and l positive, the Weibull distribution is defined by F (u)512b
b bexp(2l u ) on u$0 and zero elsewhere (Galambos, 1987). For any b, it has

finite moments of all orders. F has slow, exponential or fast decay, if b is lessb

than, equal to, or greater than one, respectively.
(2) The Log-normal, Cauchy and Pareto distributions have slow decay. The

exponential, Gumbel and Gamma distributions have exponential decay. The
Normal distribution and distributions with support bounded above have fast decay.

(3) The distribution defined by F(u)512exp(22u2sin u) on u$0 and zero
elsewhere, has decreasing density. Yet, it has no regular upper tail.
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4. Limiting choice probabilities

Limiting choice probabilities are determined by type of decay of the upper tail
of the utility distribution. When decay is fast, choice is based on the systematic
parts of the utilities of the alternatives, yielding the choice I 5hi[Iuc 5minmin i k[I

c j. When decay is exponential, there is a trade-off with uncertainty, according tok

the logit model. When decay is slow, uncertainty governs choice, according to the
relative sample sizes.

Theorem: Under Assumptions 1 –3, referring to Definition 1, p 50, and, if the0

decay of the upper tail of utility distribution F is

1. slow, then p 5A ,i i
2mc 2mci k2. exponential, then p 5 A e /o A e ,i i k[I k

3. fast, and o A . 0, then p 5 A /o A for i [ I and zeroK[I k i i k[I k minmin min

otherwise.

Proof: See Appendix A.

Remark: If F features fast decay and o A 5 0, examples show thatk[I kmin

o p may be one or zero. If the fast decay is by virtue of bounded support, ani[I imin n nad hoc proof shows that p 5 lim [(E(x ) /(o E(x ))] for i [ I and zeroi n→` i k[I k minmin

otherwise.

The proof in Appendix A is quite technical. We offer an alternative, heuristic
derivation to provide some intuition. Let the utility maximizer attain net utility

ulevel u. Define p as the conditional probability that this level is attained ini

alternative i, then

up 5 Phu . uumax u . uj 5 Phu . uj /Phmax u . uji i k i k
k k

xi1 2 F(u 1 c )i
]]]]]]5 Ph max u 2 c . uj /Ph max u 2 c . uj 5 .ij i kj k xk1#j#x 1#j#xi k 1 2P F(u 1 c )k k

1#k#m

uWe emphasize that p is assumed to be a proxy for p , at least for large values of u.i i

This is the real heuristic part of our argument. Due to the sampling, u will be close
to its supremum value, hence F(u1c ) close to one. Hence we have the first-orderk

approximations,

x xk kF(u 1 c ) 5 h1 2 [1 2 F(u 1 c )]j . 1 2 x [1 2 F(u 1 c )]k k k k

and
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xkP F(u 1 c ) . 1 2O x [1 2 F(u 1 c )].k k k
k k

Substituting,

x [1 2 F(u 1 c )]i iu ]]]]]]p .i O x [1 2 F(u 1 c )]k k k

x 1 2 F(u 1 c ) x 1 2 F(u 1 c )i i k k
]]]]]] ]]]]]]5 YO

1 2 F(u) 1 2 F(u)kO x O xj j j j

Now let the numbers of observations (x) go to infinity with proportions A . Then ui

may be taken to tend to its supremum value b5suphu:F(u),1j and the expression
ufor p tends toi

1 2 F(u 1 c ) 1 2 F(u 1 c )i k
]]]] ]]]]A lim YO A limi k1 2 F(u) 1 2 F(u)u↑b u↑bk

By elementary Lemma 3, lim [(1 2 F(u 1 c )) /(1 2 F(u))] 5 exp(2mc ), so thatu↑b i i

the logit model is derived heuristically.

5. Relationship with extreme value theory

Since in this paper we study the maximum of a sample of random utilities it is
natural to think of extreme value theory (Galambos and Kotz, 1978). The subject
of that theory is the distribution of the maximum of a large number of independent
random variables. Since the maximum goes off to the upper bound of the support
of the distribution, usually infinity, some normalization must be involved. The
basic result is that fur large numbers of observations, the distribution of the
normalized maximum is one of three types. (The first type is the Gumbel
distribution.) Which case applies, is a matter of the shape of the underlying error
distribution. Distributions which belong to the so called domain of attraction I
yield a normalized maximum that is distributed according to the first type
(Gumbel). Similarly, there are domains of attraction II and III. The domains of
attraction are detailed in Feller (1971); Galambos (1987). The relationship with
our classification of distributions, featuring exponential decay (E), slow decay (S),
or fast decay (F ), is as follows. Domain of attraction II is contained in class S.
Domain of attraction III is contained in class F. Domain of attraction I intersects
with all our classes. Domain of attraction I members Gumbel, Log-normal and
Normal fall in classes E, S and F, respectively. That everything can happen with
distributions of the domain of attraction I comes as a surprise. It has been an
article of faith that frequent observation and maximization with such distributions
yield approximately Gumbel distributed maxima in the alternatives and hence the
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logit model. An early presentation is by Cochrane (1975). (Leonardi, 1984, p. 120)
seems to have been aware of the fact that not all members of domain of attraction I
yield the logit model, but his analysis is in a restricted context and imprecise. Like
Cochrane, he confines the analysis to distributions in the domain of attraction of
the Gumbel distribution. Moreover, the mathematical errors were not corrected.

6. Implications for applied work

The choice probabilities introduced in Section 1 are basically logit, but feature
two ingredients of economic geography: attractivities A and distance deterrent m.i

These parameters offer convenient room for estimation and a good fit. However,
since the economic geographic notions have not been established in an economic
framework, they are typically absent from more rigorous studies. The main
relevance of our result to applications is that is reconciles the hitherto considered
ad hoc economic geographic gadgets with the maximum utility framework of the
logit model.

Attractivities and distance deterrents are perfectly legitimate parameters to
modify the basic logit model when a better fit is wanted.

The origin of the attractivities throws light on what are perhaps the two main
shortcomings of the logit model: the requirement that alternatives are distinct and
the property of independence of irrelevant alternatives. We shall take up these
issues in turn. The classification of choice outcomes in a number of discrete
alternatives plagues the practitioner. Following (Witlox, 1994, p. 23), the two
classical examples to illustrate this problem are Debreu’s (Debreu, 1960, pp.
186–188) case of the recordings of the same concerto with a live performance and
McFadden’s (McFadden, 1974, p. 113) case of the red and blue buses. The
difficulty is that logit probabilities are influenced by the classification. The
probability of taking the bus in one application is not the sum of the probabilities
of taking the red or the blue bus in the other one. This problem emerges in the
basic logit model because it does not account for relative numbers of observations.
In this paper, attractivities are shown to be equal to the (limiting) shares of
observations. Hence attractivities are influenced directly by the classification of
choice outcomes. The incorporation of this effect in the specification of the model
nullifies the bizarre effect of classification.

The property of independence of irrelevant alternatives states that the odds of
two alternatives is independent of the number and characteristics of the other

2mc 2mci kalternatives. Indeed, in the basic logit model, p 5 e /o e , we havei k[I
m (c 2c )j ip /p 5 e , independent of the other c and the numbers of the otheri j k

alternatives. As (Witlox, 1994, p. 22) puts it, this means that the effect of
similarities among alternatives is ignored. In the full model, however, the odds are
multiplied by A /A , the size odds of the two alternatives relative to the entirei j

sample, including the other alternatives. This ratio is affected by the introduction
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of a new alternative, if only because the A ’s must be adjusted so that theyi

continue to sum to unity.
In short, the simultaneous accounting of numbers of observations with the

classification of the alternatives takes care of the shortcomings of the basic logit
model. Another way of appreciating the relevance of our theorem is by considering
it as an aggregation result. The essence of the theorem is that if numerous,
independent alternatives are grouped by level of systematic utility or cost, then the
probability that a utility maximizer picks from a particular group is given by the
generalized logit model of the theorem. The condition that must be fulfilled for this
aggregation to hold, pertains to the classification in groups, but not to the error
distribution. The error distribution may be any, but groups must be large. We
therefore provide theoretical support to the use of the logit model for the
determination of probabilities of aggregated events.

7. Conclusion

When alternatives have different systematic utilities, but commonly distributed
random terms, the behavior of an agent who observes sufficiently often and
maximizes utility, is one of three types. Either the agent concentrates choice in the
alternatives which maximize the systematic part of utility, or (s)he chooses
according to the logit model, or (s)he randomizes decision making completely. The
type is determined by the thickness of the tail of the utility distribution, as
measured by the rate of decay.

Random utility with, however, a thin tail (featuring fast decay), yields
systematic utility maximization. A thick tail (featuring slow decay), yields
behavior randomized by the relative sample sizes. Intermediate tails (featuring
exponential decay), yield a trade-off between systematic and random utility
maximization according to the logit model.

The first element of spatial economics, by which agents concentrate choice in
one location or disperse it uniformly in the absence of spatial differentiation, is
established if randomness in the tail is nearly absent (thin tail) or overwhelming
(thick tail), respectively. The only case which remains (intermediate tail), yields
decay of choice in exponential fashion, ascertaining the second element of spatial
economics. Since concentration and complete dispersal of choice can be consid-
ered limiting cases of the logit model, the latter has been given an asymptotic
foundation.

Acknowledgements

Simon Anderson, Masa Fujita, Laurens de Haan, Tony Smith and Casper de
´ ´ `Vries kindly made helpful remarks. Hospitality at Universite du Quebec a



¨M.R. Jaıbi, T. ten Raa / Regional Science and Urban Economics 28 (1998) 75 –90 85

´Montreal is gratefully acknowledged. The research was performed at Tilburg
University with support provided by Fellowships of the Economics Research
Foundation, the Netherlands Organization for Scientific Research, and of the Royal
Netherlands Academy of Arts and Sciences, respectively. We wish to acknowledge
intellectual debt to two spatial authors. Wilson (1970) determines (shopping) trip
patterns by entropy maximization, without appeal to economic behavior. Smith
(1978) disaggregates departures and arrivals data by the so called cost-efficiency
principle (the assumption that trip patterns with low aggregated costs are more
probable), without explaining the totals. It is interesting to note that both authors
generate the exponential decay effect. These partial results stimulated us to pursue
our inquiry.

Appendix A

Proof of Lemma 1: By Assumptions 1 and 2 and convention u 52` fork

x 50,k

P (x) 5 Phu . u , all k ± ij 5E P Phu , uj dPhu , uji i k k i
k±i

u

5E P Phu , uj dPhu , ujk i
k±i

u x .0k

For x .0, by Assumption 1,i

xi

xiPhu , uj 5 Ph max u , u 1 c j 5P Phu , u 1 c j 5 F(u 1 c )i ij i ij i i
1#j#x j51i

Substitution and change of variables, v5u1c , complete the proof for x ±0.i i

Otherwise P (x)50, and the right-hand side is zero by probability theoretici

convention 0.`50. Q.E.D.

Remark on Assumption 3: A sufficient condition for the third part is

n n
Eux 2 E(x )ui i
]]]]lim 5 0,n

n→` E(x )i

or, a fortiori,

nVar(x )i
]]]lim 5 0.n 2n→` [E(x )]i
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Proof of Lemma 2: Continuing the proof of Lemma 1,

n n nP 5E P Phu , uj dPhu , uji k i
k±i

u

with, using independence Assumptions (3),
`

nn n p x iPhu , uj 5O Phx 5 pj[F(u 1 c ) 5 E[F(u 1 c ) ].i i i i
p50

Consequently,
nn n x 21idPhu , uj 5 E[x F(u 1 c ) ] dF(u 1 c ).i i i i

n nSubstitution, independence of x (k±i) and x (Assumption 3), Fubini’s theorem,k i

and change of variables complete the proof. Q.E.D.

Proof of Lemma 3: For c and d#0,

1 2 F(u 1 c 1 d) 1 2 F(u 1 c) 1 2 F(u 1 c 1 d)
]]]]] ]]]] ]]]]]5 ? .

1 2 F(u) 1 2 F(u) 1 1 F(u 1 c)

Taking limits,

w(c 1 d) 5 w(c)w(d).

Since w is monotonic, the functional equation is known to characterize the
exponential function (Feller, 1971). Consequently,

w(c) 5 A exp(2mc)

with A5w(0)51 and m 52log w(1). Since 0#w(1)#1, m must be zero,
positive, or infinite.If m is zero or positive, for c,0,

211 2 F(u 1 c) 1 2 F(u)
]]]] ]]]]w(c) 5lim 5lim F G

u→` u→`1 2 F(u) 1 2 F(u 1 c)
211 2 F(u 2 c) 21 21]]]]5lim 5 w(2c) 5 [exp(mc)] 5 exp(2mc).F G

u→` 1 2 F(u)

Q.E.D.

Proof of Lemma 4: Differentiating,

d
] log(1 2 F )(u) 5 2 r(u).du

Integrating back between u and u1c and taking exponents, we obtain the first part
of the lemma. If r has limit m, the second part is a corollary. Q.E.D.
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i `Proof of Theorem: The strategy of proof is to minorate liminf P by P $0,n→` n i
n `adding up to unity. Since P add up for all n, they must tend to P . (Otherwisei i

n 1 ` m nk ksome subsequence P would go to P . P . But then 1 5 lim o P $i i i k→` i50 i0 0m n ` 1 m ` `ko liminf P $ o P 1 P . o P 5 1.) We shall show that P addi50 k→` i i±i i i i50 i i0 0

up over certain subsets, namely I in case of fast decay, and I otherwise. Sincemin

this will force the other limiting probabilities to zero, we may limit attention to
i[I for fast decay, and to i[I otherwise. We will minorate P (x) of Lemma 1 inmin i

terms of w(c 2c ) of Lemma 3. If decay is fast, we limit attention to i[I , sok i min

that c 2c is nonnegative and w applies. Otherwise, i[I and c 2c may bek i k i

negative, which is in agreement with Lemma 3. With this limitation on i in mind,
we may proceed.

Fact 1: Under Assumptions 1 and 2, for x±0 and any ´[(0,1), there is a B with´

F(B ),1 and, referring to Lemma 1,´

21C x´ i
]]]P (x) $ (1 2 exph 2 C [1 2 F(B )]x j)mi ´ ´ iO x wk51 k k

21where C 52´ log(12´) and w 5w(c 2c )1´.´ k k i

¯ ¯Proof of Fact 1: Define w5max (c 2c ). Then w $1. By Lemma 3 (substitut-k[I k i

ing Definition 2), for any ´[(0,1), there is B close to suphuuF(u),1j in the sense´
w̄

]]that #F(B ),1 and k[I,´w̄ 1 ´

0 # 1 2 F(u 1 c 2 c ) # v 5 [w(c 2 c ) 1 ´] ? [1 2 F(u)]k i k k i

w̄
]]¯ ¯# (w 1 ´)[1 2 F(B )] # (w 1 ´) 1 2 5 ´.S D´ w̄ 1 ´

log(1 2 v)
]]]By concavity of log (12v), hence decreasingness of , both in v[(0,1),v

log(1 2 v ) log(1 2 ´)k
]]]] ]]]$ 5 2 C or log(1 2 v ) $ 2 C v´ k ´ kv ´k

and
xkF(u 1 c 2 c ) 5 exphx log[1 2 [1 2 F(u 1 c 2 c )]]jk i k k i

$ exp[x log(1 2 v )] $ exp(2C x v ).k k ´ k k

In particular, for u$B ,´

x 21 xi iF(u) $ F(u) $ exp(2C x v ).´ i i

By Lemma 1, substituting back v 5w [12F(u)] and v 5w [12F(u)], for x±0,k k i i
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`
m

P (x) $ x E exp 2 C O x w [1 2 F(u)] dF(u)H Ji i ´ k k
k51

B´

m m21

5 x C O x w 1 2 exp 2 C O x w [1 2 F(B )] .S D S H JDi ´ k k ´ k k ´
k51 k51
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Fact 2: Under Assumption 3,
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mis the value under a continuous function; they tend to h (1, A)5A /o A w ini i k51 k k

n m n n nprobability as n→`. Moreover, because x /o x w #x /x w 51/(11´),1,i k51 k k i i i
n nh ( y , z ) are uniformly integrable in n, implying convergence of the meansi

n(Billingsley, 1968, p. 31). Similarly, x →` in probability as n→`. Becausei
nC [12F(B )] is positive (Fact 1), exph2C [12F(B )]x j tend to zero in probabili-´ ´ ´ ´ i

ty and are bounded by unity, implying convergence of the means. The proof of
Fact 2 is complete.

Now we prove the theorem. By Lemma 2 and Fact 1,
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Now let n→`. Apply Fact 2 and the definition of w (Fact 1) to the right-hand sidek

of the just derived inequality. Then
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Since this is true for any ´[(0,1) and C →1 for ´↓0, it must be that´
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By Definition 4 and Lemma 3, if decay is

` m1. slow, P 5A /o A and add up over I,i i k51 k
` m2. exponential, P 5A exp(2mc ) /o A exp(2mc ) and add up over I,i i i k51 k k

`3. fast, P 5A / o A and add up over I , provided that o A .0.i i k min k
k[I k[Imin min

By the introduction of the proof, these are the limiting choice probabilities for the
indicated sets, and the remaining must be zero. Q.E.D.
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