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Abstract.  The aim of the paper is to measure the efficiency of an industry, and to 

decompose it in firm efficiencies—which indicate how close firms approximate best 

practices—and an organization efficiency—which indicates the degree of optimality 

of the number of firms and their distribution.  The latter component provides an 

efficiency measure for the industrial organization.  Economies or diseconomies of 

scale and of scope play a big role in the determination of the optimal industrial 

organization and the consequent measurement of the efficiency of an observed 

industry.  Different approaches to the modeling of scale economies will be reviewed.  

The paper shows in detail how the efficiency of an industrial organization can be 

measured as a gap between mean firm efficiency and overall industry efficiency.  The 

analysis is extended to dynamic models, to measure the role of entry and exit in the 

efficiency of the industrial organization. 

 

*I am grateful to editor Subhash Ray for numerous comments and suggesting to let 

the static efficiency model encompass productivity growth analysis. 
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1. Efficiency and industrial organization  
 

If you want to rank firms in an industry, you better use a uniform set of weights for 

performance components across the firms one compares.  This paper explains how 

potentially conflicting performance aspects can be balanced by assigning rational 

weights.  Here we distinguish between internal and external (or competitive) 

benchmarking. 

 

Internal benchmarking helps to spot exemplary business units within big companies, 

such as hotel chains.  For every unit it spots the relevant benchmarks, suggests cost 

components that can be cut and potential revenue sources that would boost 

performance.  External benchmarking includes the competition in the pool of 

examples and, therefore, is also called competitive benchmarking.  It is a more 

demanding management tool, if only because data are hard to get from competitors, 

but potentially rewarding.  By extending the pool to which you compare, the 

benchmark will be better and, therefore, the achievement level higher.  External 

benchmarking is relevant to the analysis of industrial organization. 

 

The performance of an industry is more than the sum of the parts.  Not only do some 

firms under perform, but also the reallocation of resources between firms may be 

suboptimal.  Obvious improvements could be achieved by reallocating resources from 

less to more efficient firms, but more subtle gains can be made by reallocating 

between efficient firms.  Roughly speaking, a better industrial organization would 

alleviate shortages.  In this paper we measure how much could be gained not only by 

eliminating firm inefficiencies, but also by a more efficient allocation of resources 

between the firms.  The latter component measures the inefficiency of an industrial 

organization. 

 

Benchmarking, particularly data envelopment analysis based, is yet to be integrated 

with other management tools.  The airline industry is perhaps the one with the most 

widespread use of benchmarking.  Here managers routinely measure the performance 

of their company in comparison to the competition and consumers visit websites to 

compare not only prices but also flight statistics, to assess costs and value aspects, 
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such as the reliability of departure and arrival times.  Nonetheless, Francis, 

Humphreys and Fry (2005) report that benchmarking is the most popular performance 

measurement tool in the industry, but that only one airline beefs it up with DEA.  The 

perceived incapacity to value alternative performance components may be a hurdle 

and we will overcome it. 

 

Most applications of benchmarking are basically alternative performance 

measurements and rankings, both financial and non-financial, and the bulk is based on 

output scores, such as revenues, net earnings, and customer satisfaction.  I find it 

important though to bring in the inputs, if only to separate size effects from true 

performance scores.  I will do so throughout the paper and we will encounter a 

number of interesting findings.  For example, the use of output to input value ratios 

will emerge as natural performance measures, instead of difference based level 

concepts, such as profit (which is revenue minus cost).  There is a close connection 

between the subtle distinction between ratios and difference on one hand and the 

distinction between the concepts of efficiency, productivity and profitability on the 

other.  All this tends to be a smorgasbord and it is high time to disentangle the 

concepts and to clarify which is appropriate for performance measurement and 

ranking.  This paper provides the analysis. 

 

External or competitive benchmarking is applicable both to business units and to 

corporations.  In the former case comparable intra-company information is required 

for different companies.  In Table 1 this case is denoted by the box “Competitive 

benchmarking.”  In the latter case aggregate company data are compared, which is 

less demanding.  This case is box “External benchmarking” in Table 1 and is relevant 

to industrial organization.    

 

 

 Reference Organization: 

Firm: Corporation Industry 

Business Unit Internal benchmarking Competitive benchmarking 

Corporation Organization benchmarking External benchmarking 

 

Table 1.  A taxonomy of benchmarking.   
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There is an interesting intermediate level of benchmarking, in between internal and 

external/competitive benchmarking.  It is the benchmarking of an industrial 

organization by measuring it up against its constituent firms.  The idea is borrowed 

from economic theory, which has developed a subtle technique to measure the 

efficiency of an economy without comparing it to other economies.  Here inefficiency 

encompasses not only suboptimal production of outputs by firms (excessive use of 

inputs), but also the subtle of form of inefficiency called allocative inefficiency.  

There may be scope for performance improvement by reallocating resources between 

firms.  If so, the firms may be efficient, but the industry is not.  This source of 

inefficiency can be exposed without benchmarking the industry against its foreign 

competitors, but by benchmarking the industry against its own firms.  If we 

benchmark an industry internally, a subtle conceptual issue emerges, benchmarks are 

specific to the firm considered.  While internal and competitive benchmarking are the 

same ballgame from the point of view of technical analysis, industrial organization 

benchmarking is distinct in that it requires some extra work to remove the 

dependence. 

 

If we benchmark an industry against its own firms, then we analyze the performance 

of the industrial organization given the industry’s total inputs and total outputs.  We 

will do so by analyzing how much better the industry could perform if not only each 

firm operates efficiently, but also the industry’s resources are allocated optimally.  

This problem will be solved by the operations research technique of linear 

programming, but this time the benchmark valuations or shadow prices pertain to the 

industry as a whole.  In this way the results are no longer specific to firms and can be 

used to rank them objectively. 

 

The remainder of this paper is organized as follows.  Section 2 introduces efficiency 

measurement at the level of the firm.  Section 3 discusses the subtle interrelations 

between efficiency, productivity and profitability.  Section 4 discusses ranking and 

pricing issues.  Section 5 discusses economies of scale and Section 6 presents the 

ramifications for efficiency measures, including for industries.  Section 7 decomposes 

industrial efficiency into firm and organization components and accounts for changes 

through time, including entry and exit.  Section 8 concludes. 
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2. Efficiency measurement of firms  
 

An industry consists of I firms.  Firm i (where i = 1, …, I) is a black box that 

transforms input quantities 1 , ,i i

k
x x…  into output quantities 1 , ,i i

l
y y… .  Here subscript k 

is the number of inputs and subscript l is the number of outputs.  Superscript i 

indicates the firm of which we take the data.  We wish to know at which level a firm 

operates compared to its full potential (i.e. full efficiency).  In other words, we pose 

the question how much more could the firm deliver?  To answer this question we 

conduct a thought experiment.   

 

We allow the firm to redistribute its inputs over the activities represented by the 

inputs and outputs of all firms.  Hence imagine firm i would employ its inputs to run 

the activities of firms 1, …, I with intensities θ1, …, θI, where I is the total number of 

firms.  The firm would need quantities 1

1 1 1

I

m
x xθ θ+ +…  of input 1, …, 1

1

I

k k I
x xθ θ+ +…  

of input k, and produce quantities 1

1 1 1

I

I
y yθ θ+ +…  of output 1, …, 1

1

I

l l I
y yθ θ+ +…  of 

output l.   

 

The envisaged operation is feasible if the required inputs do not exceed firm i’s 

available inputs.  The operation improves the output level if the hypothetical outputs 

exceed some multiple of the respective actual outputs of firm i.  This output multiple 

is modeled by means of the so called expansion factor, e.  The maximum expansion of 

output of firm i is determined by the following linear program: 

 

1 , , , 0

1 1

1 1 1 1 1

1 1

1 1 1 1 1

max :

, ,

, ,

I e

I i I i

I k k I k

I i I i

I l l I l

e

x x x x x x

y y y e y y y e

θ θ

θ θ θ θ

θ θ θ θ

≥

+ + ≤ + + ≤

+ + ≥ + + ≥

…

… … …

… … …

    (1) 

 

In program (1) the expansion factor is maximized subject to the feasibility constraints 

on the inputs and proportionate expansion of the outputs.  All that is needed to run 

benchmarking program (1) are the inputs and the outputs of all firms.  Implicitly, 
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program (1) assumes constant returns to scale.  In Section 5 we will analyze more 

complicated models.    

 

The assumption of constant returns to scale enables us to normalize the activities.  For 

example, if there are two inputs and one output, it is natural to rescale such that the 

outputs of all activities are equal to one.  After this rescaling, firms differ in their 

inputs only and we may plot a scatter diagram in input space, see Figure 1. 

 

 

           x2 

 

           1 2 

 

      3          4 

 

           5        6 

      x1 

Figure 1.  An industry with two inputs and a single output. 

Firms 1, 3 and 5 use minimal input.  Firms 2, 4 and 6 can contract their inputs. 

 

 

In Figure 1, firm 4 can reduce its distance to the origin from 100% to 75%.  That way 

it is moved to the midpoint between firms 3 and 5.  Indeed, if we run activities 3 and 5 

at intensities ½ each, the required inputs are the average of the inputs of firms 3 and 5, 

which is represented by the midpoint, while the output would be ½ + ½ = 1, hence 

unchanged.  This way firm 4 can produce its output using only 75% of its inputs.  The 

remainder, 25% of the inputs, can be considered wasted (and be reallocated without 

reducing output).  Because of the constant returns-to-scale assumption, the capacity to 

produce output with ¾s of the inputs is equivalent to the capacity to produce 4/3rds of 

the output with the given input.  Application of program (1) to unit 4 yields an 

expansion factor e = 4/3.    

 

Firm 2, also in Figure 1, needs only some 80% of its inputs if it would employ the 

techniques of firms 1 and 3; 20% of its input can be considered waste for this firm.  
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Application of program (1) to unit 2 yields an expansion factor e = 5/4.  The lower 

envelop of the observations, the thick lines connecting firms 1, 3 and 5, represents the 

minimally required inputs for the production of one unit of output.  These three units 

are the benchmarks.  The distance between the envelope and a firm measures the 

unnecessary input, or inefficiency.  This technique is called Data Envelopment 

Analysis or DEA for short. 

 

In general it is impossible to identify an all-purpose best practice or practices.  It 

depends on the unit you benchmark.  For example, in Figure 1 there is no general 

purpose best practice.  To firm 4 the benchmarks are firms 3 and 5, but to firm 2 the 

benchmarks are firms 1 and 3.  Basically, the relevant best practices must be 

compatible with the mix of resources of the unit one investigates.  In Figure 1 firm 4 

is well endowed with the first input.  The technique of firm 1, though efficient, 

requires a lot of the other input and, therefore, is not relevant to firm 4.
1
 

 

Let me move from the example depicted in Figure 1—where two inputs are combined 

to produce a single output—to the mirror image, where one input, say labor can be 

used to produce two outputs, such as serving meals and cleaning tables.  In this case it 

is natural to exploit the assumption of constant returns to scale to the activities such 

that all inputs are equal to one.  Upon this rescaling firms differ in their outputs only 

and we may plot a scatter diagram in output space, as depicted in Figure 2. 

 

 

           y2 

        43     2 

            

 

        25     1          3 

        19      

            5               4 

     20     30             52  y1 

Figure 2.  An industry with a single input and two outputs. 

Firms 2, 3 and 4 produce maximal output.  Firms 1 and 5 can expand their outputs. 

                                                 
1
 In Figure 1 firm 6 has only one benchmark, namely firm 5. 
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In output space the most efficient firms are on the North-Eastern frontier.  We 

envelop the data again, but now from above.  If firm 1 were to divide its input 

between the techniques employed by firms 2 and 3, it could produce their average 

output, which is represented by the midpoint.  This way firm 2 can expand its output 

by some 20%.  The precise output expansion figure is 22%.  Figure 2 also shows that 

firm 5 can produce more by adopting the techniques of firms 3 and 4.  

 

Having developed some intuition what is going on when we calculate wasted inputs, 

we now proceed with our formal analysis, to pave the way for the determination of the 

accounting prices, a key tool in the economic analysis.  Accounting prices are 

associated with constraints.  Now linear program (1) features k + l ordinary 

constraints (k for the inputs and l for the outputs) plus I nonnegativity constraints (for 

the intensities with which the activities are run).  Constraints are characterized by the 

coefficients of the variables.  The variables in program (1) are the intensities  θ1, …, 

θI and expansion factor e.  Mind that the input and output quantities are no variables, 

but given, fixed data. Formally, they are coefficients and, in case of the inputs 

( 1 , ,i i

k
x x… ), bounds.   

 

Multiplying through the output constraints in (1) by -1, to write them in standard 

linear programming format (with an ≤-sign), the coefficients in the input constraints 

are 1 1

1 1( 0) , , ( 0)I I

k k
x x x x… … …  and the coefficients in the output 

constraints are 1 1 1 1

1 1 1( ) , , ( )I I

l l l
y y y y y y− − − −… … … , where the last 

components reflect the right hand sides of the second line of inequalities in program 

(12).  These right hand side output terms are products of outputs (coefficients) and the 

expansion variable.  They are not bounds!  The output constraints have no bounds; 

formally they are zero.  The objective functions coefficients of the variables (θ1, …, θI 

and e) are (0 0 1)… , since the intensities θ are tools and only the last variable 

feeds the objective function.  This sums up the formal structure of benchmarking 

program (1) and we are ready to invoke the accounting prices. 
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It is customary to denote the accounting prices of the inputs by w1, …, wk and of the 

outputs by p1, …, pl.  Thus, the dual equation becomes: 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 ; ;

0 ;

1 ; , , 0, , , 0

k k l l

I I I I

k k l l

i i

l l k l

w x w x p y p y

w x w x p y p y

p y p y w w p p

≤ + + − − −

≤ + + − − −

≤ + + ≥ ≥

… … …

… …

… … …

   (2) 

 

One of the inequalities in (2) is in fact an equality, as I will argue now.  The optimal 

value of expansion factor e is at least one, as is seen by the following choice of the 

intensity variables: θ1 = 1 and θ2 = … = θI = 0; this amounts to a simple reproduction 

of firm i itself.  Hence the nonnegativity constraint for the last variable, e, is 

nonbinding.  The phenomenon of complementary slackness yields that the slack in the 

dual constraint is zero.  Since this is the last component in (2), we obtain the 

following condition: 

 

1 1 1i i

l l
p y p y+ + =…          (3) 

 

Equation (3) is the so called price normalization constraint.  It resolves arbitrariness 

in the program that maximizes output, (1), as I will explain now.  It has to do with the 

units of measurements.  Imagine that all outputs are in kilograms but would be 

rescaled in metric pounds.  Since there are two metric pounds to the kilogram, this 

would double all y’s.  The optimal x’s would not be affected, nor the relative 

accounting prices of either the inputs or the outputs.  By equation (3) all the output 

prices would be halved, precisely as one expects when the unit of measurement is 

halved.  This concludes the explanation of equation (3).   

 

The other components of dual equation (2) read as follows:     

 

 1 1 1 1

1 1 1 1 1 1 1 1; ; I I I I

l l k k l l k k
p y p y w x w x p y p y w x w x+ + ≤ + + + ≤ + +… … … …  (4) 

 

Dual inequality (4) highlights an important fact:  Accounting prices render all 

activities unprofitable or zero.  The distinction between negative and zero accounting 

profits is crucial.  It signals which activities are undertaken with positive intensity, in 
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other words which are the benchmarks.  It is easy to confirm.  By the phenomenon of 

complementary slackness we know that if an activity is run with positive intensity, θ*i 

> 0, then there is no slack in the dual constraint, 1 1 1 1

i i i i

l l k k
p y p y w x w x+ ≤ + +… , and, 

therefore, such activities must break even indeed. 

 

Since accounting prices are shadow prices, we can invoke their marginal productivity 

interpretation.  In the present context an input price measures by how much the output 

level could be raised if an additional unit of that input were available and an output 

price measures how much the overall output level could be raised if a unit of that 

output were gifted.  The latter argument is subtle, because in benchmarking we fix the 

proportions of the outputs.  Hence, if a unit of some output arrives as a gift, the 

resources must be slightly reallocated away from the production of this output, 

producing a little more of the other outputs, in order to preserve the proportions.  If a 

price of an output component is higher, than of some other, it means that one unit 

releases more productive resources.  Output accounting prices measure their values in 

terms of resource costs. 

 

In general accounting prices make some firms other than themselves break even.  It is 

extremely interesting to identify them, because they constitute the best available 

practices.  So, focus on the firms for which the associated equations in (4) are binding.  

It constitutes the set of activities that would be run if the resources available to firm i 

are used optimally.  The definition of efficiency is straightforward.  Compare a firm to 

its peers in the industry.  More precisely, calculate how much more it could produce 

by solving program (1).  Let the expansion factor be e.  For example, if e = 1.1, it 

could produce 10% more and, therefore, it produces only 1/e = 0.91 of its potential 

output.  Hence efficiency is simply defined by the inverse value of the expansion 

factor of benchmarking program (1), 1/e.  Since the expansion factor is at least one, it 

follows by sheer arithmetic that efficiency is a measure between zero and one.  Full 

efficiency (1/e = 1) represents the situation where a firm cannot improve its 

performance, is a leader. 

 

We now use our apparatus to develop a nice alternative expression for efficiency, 

highlighting the performance of a firm we are interested in.   The main tool is the 
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main theorem of linear programming, which equates the value of the objective 

function with the value of the bounds.  In benchmarking the objective function is the 

expansion factor, e, see program (1).  As noted, the value of the bounds in this 

program is 1 1

1 1 k k
w x w x+ +… .  Invoking the price normalization constraint, equation (3), 

we conclude that the expansion factor is equal to the accounting cost/revenue ratio: 

 

 1 1 1 1( ) / ( ).i i i i

k k l l
e w x w x p y p y= + + + +… …      (5) 

 

Formula (5) renders the expansion factor robust with respect to price level changes.  

For example, halving all prices (as in the transition from kilograms to metric pounds) 

does not affect expression (5), because halving the numerator and the denominator 

cancel.  Formula (5) is important, because it weighs the importance of the inputs and 

the outputs for efficiency.  Obviously, efficiency is increased by reducing inputs or 

increasing outputs.  An input reduction by a unit is more effective if the shadow price 

is higher and the same holds for an output increase. 

 

Since efficiency has been defined as the inverse of the expansion factor, equation (5) 

implies 

 

 1 1 1 1( ) / ( ).i i i i

l l k k
Efficiency p y p y w x w x= + + + +… …     (6) 

 

In words, the performance of a firm is measured by the revenue/cost ratio at 

accounting prices.  Equation (6) admits a frequently used interpretation of efficiency 

measurement.  Imagine the outputs are produced by a hypothetical,  efficient firm.  In 

fact the efficient inputs are given by the solution of program (1), 

1 1

1 1 1 1, ,I I

I k k I
x x x xθ θ θ θ+ + + +… … … , if the outputs are inflated by expansion factor 

e, hence a fraction 1/e of these inputs is enough to produce 1 1

1 , ,
l

y y… .  The efficiency 

of the hypothetical firm is one.   Applying formula (6) to the hypothetical unit, we see 

that it would break even: revenue equals cost.  Here ‘cost’ is the value of the 

minimally required inputs to produce the outputs,  1 1

1 , ,
l

y y… .  Substituting this back in 

the original formula (6), we conclude the following intuitive, yet powerful statement.  

Efficiency is the Cost/Value ratio of inputs, where ‘cost’ is the value of the minimally 
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required inputs, ‘value’ refers to the actual inputs, and both types of inputs are valued 

at accounting prices. 

 

3. Efficiency, productivity, and profitability 
 

We discuss and distinguish some important business concepts which are often 

confused.  An example from the literature is the following quote.  Discussing farming 

enterprises in Finland, Anja Yli-Viikari et al. (2002, p. 20) write  

 

“To guarantee the continuation of the production the enterprises have to be profitable.  

The prerequisite of the profitability is efficiency.”   

 

Now particularly in agriculture there is no simple connection between profitability 

and efficiency.  The breakdown of the relationship goes both ways.  On one hand, 

many inefficient farms are quite profitable, because the prices are maintained at 

artificially high levels.  On the other, efficient firms are not necessarily the most 

profitable ones.  While it is true that a prerequisite for maximum profitability is 

efficiency, cost-cutting is but one way to boost profit.  A notorious alternative 

procedure is the exercise of monopoly power; it deters more efficient firms and 

creates rents.  As J.R. Hicks (1935, p. 8) quipped, “The best of all monopoly profits is 

a quiet life.”  In other words, profit need not signal efficiency! 

 

Although there are interrelations between efficiency, productivity and profitability—

and we will discuss them—the concepts are fundamentally different.  I will explain 

the subtleties by means of a simple example.  Consider a single input-single output 

industry with two firms, a duopoly.  Denote the input quantities by x and the output 

quantities by y.  Use w and p for the prices of the input (the labor wage) and the 

output (the product price), respectively, and use superscripts to indicate to which firm 

a symbol pertains: firm 1 or firm 2. 

 

In our discussion we must distinguish market prices from accounting prices.  Market 

prices are observed and may vary.  Some firms negotiate tighter labor conditions than 

others; and some firms may have shrewder salesmen, extracting higher prices.  A 
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well-cited example is someone who “could sell sand to the Arabs.”  Indeed, in this 

situation any price above zero represents market power.   

 

Denote market prices by an underscore and reserve the regular symbols for 

accounting prices.  In short, the symbols for firm 1 are input and output quantities x
1
 

and y
1
, input and output market prices w

1
 and p

1
, and input and output accounting 

prices w
1
 and p

1
.  The symbols for firm 2 are similar, but with superscript1 replaced 

by superscript 2.  The techniques implicit in the firm input-output observations (x
1
, y

1
) 

and (x
2
, y

2
) are given by the output/input ratios y

1
/x

1
 and y

2
/x

2
.  These numbers give 

the amount of output one can produce with a unit of input, and, therefore, constitute 

the productivities of the respective firms.  The concept of productivity gets a bit more 

involved in the presence of multiple inputs and outputs, but this issue can wait.  In our 

simple duopoly, let the first firm be the more productive than the second: y
1
/x

1
 > y

2
/x

2
.  

(This is an innocent assumption, because we are free to relabel the firms.)  Then firm 

1 can produce no more than it produces, at least under the assumption that the data 

represent all conceivable practices of production.  Firm 2, however, could perform 

better by adopting the technology of firm 1.  That way it would produce y
1
/x

1
 units per 

unit of input and since it commands x
2
 inputs, its potential output is (y

1
/x

1
)x

2
.  By the 

presumed productivity inequality this exceeds the actually produced quantity y
2
. 

 

The expansion factor, e, measures how much firm 2 could produce relative to what it 

produces; it equals e = (y
1
/x

1
)x

2
 / y

2
.  Now, as we have seen in Section 2, efficiency is 

the inverse expansion factor, measuring the actual output as a fraction of potential 

output: 1/e = y
2
 / (y

1
/x

1
)x

2
 = (y

2
/x

2
)/(y

1
/x

1
).  Since firm 1 can do no better than using its 

own technology, its expansion factor equals 1, and, therefore, its efficiency is also 1 = 

(y
1
/x

1
)/(y

1
/x

1
), to present it in the same format as for firm 2.  For both firms we thus 

have the following result.  Efficiency equals relative productivity.  Here productivity 

is taken relative to the best practice; indeed, firm 1’s productivity features in either 

denominator. 

 

A further, interesting relationship between the concepts of productivity and efficiency 

is established in a dynamic setting, where we track the measures through time.  If we 

proceed to the next year, all quantities will be different.  Let me assume that the 

changes are slight, so that firm 1 remains the productivity leader.  Imagine that firm 2 
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has become more efficient.  What does it mean?  That management does a better job, 

producing more output per input?  Not necessarily.  Positive efficiency change only 

means that relative productivity has increased.  One way to boost efficiency is indeed 

to improve productivity, but another comes with stalling leadership.  If the industry 

leader slips in terms of productivity, the followers get closer and formally this shows 

as positive efficiency change!  Think of deteriorating industry conditions.  Examples 

abound.  In the mining industry the quality of the ore lessens as time progresses, 

simply because the easiest available ores are mined first.  Conditions may also 

deteriorate due to demand, particularly when a product approaches the end of its life 

cycle, with new substitutes taking over.  And conditions are influenced by world 

markets.  For example, if a low wage country enters the industry and the incumbents 

are sluggish in making adjustments, such as reallocations to newly developing 

economies, costs may press harder on smaller numbers of output. 

 

Conversely, without any change in the firm, its efficiency may change.  In fact, in a 

world of technical progress the best practice productivity increases and since 

efficiency is productivity relative to the best practice it will go down by the 

denominator effect if there is no change in the inputs or outputs of the firm we 

analyze.  The Dutch proverb Standstill is decline is particularly relevant to the concept 

of efficiency, because the latter is a relative concept.  The underlying concept of 

productivity—output per input—is an absolute concept though.  There are many 

physical examples.  The fuel “efficiency” concept of miles per gallon is a productivity 

measure, indicating how much output one gets per unit of input.  If, however, the 

input and output are of the same dimension, as in energy conversion, we are back in 

the situation where the “best” is a ratio of one (1 Watt of converted energy per Watt 

of basic energy).  Here a ratio equal to one represents the case of no waste, hence full 

efficiency.  Another physical example of a productivity measure is tons harvested (say 

of rice) per acre.  To assess if it signals a good performance, we must know the size 

relative to the maximum observed magnitude, and that is efficiency. 

 

Bring in profitability, a third related concept.  In the single input-single output 

duopoly, with firm 1 more productive (y
1
/x

1
 > y

2
/x

2
), is firm 1 necessarily more 

profitable?  Now we must disentangle a number of issues.  First, there is the size 

issue.  Firm 1 may enjoy a better margin between revenue and cost per unit of output 
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(because it needs less input) and hence be the more profitable firm per unit of output, 

but firm 2 may have a bigger market share and hence generate a greater sum of 

profits.  The size effect may outweigh the productivity effect.  We correct for it by 

measuring profit per unit of sales.  In other words, instead of profits py – wx we 

compare the profit rates (py – wx)/py.   

 

The second issue is the presence or absence of well functioning markets, both on the 

input and the output side.  If the firms face common market prices, both on the input 

and the output sides, we may compare the profit rate of the more productive firm, 

which is (py
1
 – wx

1
)/py

1
, with that of the less productive firm, namely (py

2
 – wx

2
)/py

2
, 

and conclude that the former is bigger.  The proof of this inequality is easy:  The 

leading terms are equal (namely 1), while the second terms are inverse productivities 

(x/y) with a common coefficient (-w/p).  Inverse productivity is obviously negatively 

related to productivity, but the minus sign makes the relationship between 

productivity and profitability per unit sales a positive one.   

 

However—and this takes us to the third issue—the relationship between efficiency 

and profitability breaks down the moment we drop the single input-single output 

assumption.  Figure 3 provides a simple example.  

 

 

           K 

 

          7          1  

         2 

          4        3          

 

            

  3   9  L 

Figure 3.  An industry with two inputs and a single output. 

Firms 1 and 3 are efficient.  Firm 2 is not.  Yet, if labor is very expensive, input 

combination 3 is more costly than input combination 2. 
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In Figure 3 three firms each produce one unit of output using two inputs, namely labor 

and capital.  Firm 2 is inefficient, because it can contract its labor and capital inputs to 

the midpoint of techniques 1 and 3, as explained in Section 2.  Then, by dividing its 

inputs between the techniques 1 and 3, it would produce ½ + ½ = 1 unit of output.  

However, if capital is very inexpensive, relative to labor, firm 2 will be more 

profitable than firm 3, simply because it is more economical, using the inexpensive 

input, capital. 

 

It makes a difference—even for multi input-multi output industries—if profits are 

based on accounting prices.  It is preferable, because it restores the relationship 

between efficiency and profit per unit of sales.   The key to the analysis is equation 

(6), which equates efficiency to the revenue/cost ratio at accounting prices.  Simple 

manipulation modifies that equation into the following: 

 

 
1 1 1 1

11 1 1 1

1 1

1 1

( ) ( )
1 .l l k k

l l

p y p y w x w x
Efficiency

p y p y

−+ + − + +
= −

+ +

… …

…

   (7) 

 

Because the right hand side of equation (7) is positively related to efficiency (as there 

are two minus signs) we once more have a positive relationship between efficiency 

and profitability.  But be careful.  Under accounting prices, fully efficient firms break 

even and inefficient units operate at a loss.  Indeed, if efficiency is one in formula (7), 

as is the case fully efficient firms, then the right hand side is zero, hence profit must 

be zero.  If the efficiency is less than full, for example ¾, then the right hand side 

would be -⅓, creating a loss on the left hand side. 

 

It is not difficult to evaluate the expressions numerically and I will illustrate this for 

the example of Figure 3.  Accounting prices can be computed using the zero profit 

conditions for the efficient firms.  In Figure 3 the accounting profit of firm 1 is 1 – 

(3w + 7r), where w is the wage rate and r the rental rate, while the accounting profit of 

firm 3 is 1 – (9w + 4r).
2
  Setting these two profits equal to zero, we obtain two simple 

equations: 3w + 7r = 1 and 9w + 4r = 1.  The solution is w = 1/17 and r = 2/17.  These 

figures can be used to calculate the total cost of firm 2, hence its accounting profit 

                                                 
2
 Revenue is 1 because of the single output variant of price normalization condition (3), Section 2. 
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(which will be negative) and efficiency, using formula (7).  Let me carry out the 

calculation.  Reading Figure 8, firm 2’s inputs are 7 units of labor and 6 of capital, 

hence its profit is 1 – (7/17 + 6×2/17) = 1 – Efficiency
–1

, using formula (7).  Solving, 

the efficiency of firm 2 amounts 17/19.  In general, the numbers are given simply as 

output by the linear programming routine. 

 

The crucial difference between market prices and accounting prices is that the former 

are observed and the latter are not.  Market prices are exogenous, meaning that they 

are considered given, as data.  Accounting prices are endogenous, meaning that they 

are derived from the data, not from price data, but from input and output data.  It is 

instructive to see the difference in the simple single input-single output duopoly, 

where firm 1’s data are input x
1
, output y

1
, prices w

1
 and p

1
, and firm 2’s data are x

2
, 

y
2
, w

2
 and p

2
.  Different price normalizations are allowed.  If we stick to Section 2, 

equation (3), it is py
1
 = 1 and the zero profit condition, py

1
 – wx

1
 = 0, yields w =  

py
1
/x

1
 = 1/x

1
.  Instead of the accounting prices p = 1/ y

1
, w =  1/x

1
 we may use p = 1, w 

= y
1
/x

1
 as the relative prices are the same and that is all what matters.  There are two 

ways to understand this.  One is via result (6), equating efficiency with the 

revenue/cost ratio.  This measure is clearly insensitive with respect to proportionate 

price changes.  The other is to visualize a change in the scale of measurement.  For 

example, if firm 1 produces 100 kilograms of rice, then the normalization condition 

py
1
 = 1 reads p = 1/100 = 1 cent per kilogram.  Now we could choose this as a new 

currency unit; i.e. the cent instead of the dollar.  Then the value of output would not 

be 1 but 100 cents and the price would be 1 cent or 0.01 only.   

 

The bottom line is that accounting prices must be derived from quantity data, in a way 

such that the most productive firms break even.  Profitability implications of 

performance may be misleading when external, possibly distorted prices are used.  

For example, if the less productive firm, firm 2, commands a lower input price, w
2
 < 

w
1
, it may be equally profitable or even more so than firm 1, if the input price 

discount is strong.  The question arises what to do in such a situation.  Is it 

advantageous to stimulate the productive, firm 1, or the profitable, firm 2?  In other 

words, where should one allocate the industry’s resources?   
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The answer may vary with the setting, but a general observation is in order.  Both 

firms would benefit from adopting the most productive technique.  In the simple 

example this would not change a thing to firm 1 (which already is the best practice 

firm), but it clearly would make firm 2 more profitable.  Firm 2 earns a profit of p
2
y

2
 – 

w
2
x

2
, but replacement of output y

2 
by potential output (y

1
/x

1
) x

2
 would add to the 

revenue term, hence increase profit.  Here we recognize y
1
/x

1
 as the best-practice 

productivity.  Alternatively, should the market not bear the additional output, the 

profit could be increased by cutting back input x
2
 to what is necessary given the best 

practice technique, namely (x
1
/y

1
) y

2
.
3
  Here we recognize x

1
/y

1
 as the minimal 

technical coefficient.   

 

The productivity and the technical coefficient are each other’s inverse, which is no 

surprise, because productivity is basically output per unit of input and a technical 

coefficient is input required per unit of output.  The lesson of this example is that to 

improve performance, one must be on the look for the most productive practice, not 

the most profitable.  This is the relevant rule of thumb even if the criterion is profit.  

In other words, the profit of a firm is enhanced by adopting best practice techniques, 

not by adopting the most profitable practices.  In our duopoly example the adoption of 

the technique of the most profitable firm (firm 2) would even be detrimental to the 

profit of firm 1!   

 

This paradoxical relationship between productivity and profitability rests on the 

following fact:  One may copy techniques, but not prices.  Emerging economies 

rightly adopt Western production practices in manufacturing and the service sectors, 

because like everyone they benefit from efficiency.  Conversely, these Western plants 

do not copy their Eastern counterparts, even though they may be more profitable.  The 

low wages prevailing in China and its Southern neighbors cannot be copied.  They are 

reflections of conditions beyond business control, such as the endowments of nations.  

If a nation is well endowed with labor relative to other resources such as minerals, 

local wages will be low.  This argument is valid even in the absence of exploitation. 

 

                                                 
3
 The latter is indeed less than x

2
 by assumption that firm 1 is more productive, y

1
/x

1
 > y

2
/x

2
. 
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4. Ranking 
 

Ranking is a persuasive management tool that provides a sense of direction and 

infiltrates all corners of the information society.  This section discusses the subtleties 

that surround this main application of benchmarking.  The basic idea is to calculate 

the efficiencies of firms and to line them up between 0 to 100 percent, but there is a 

complication.  Efficiency is measured by the revenue/cost ratio at accounting prices—

see Section 2, equation (6)—but these prices vary across firms.  The accounting price 

of an input measures how much more output could be produced if an extra unit of the 

input were available.  Now if an input is scarce in a firm, it acts as a bottleneck and, 

therefore, carries a high accounting price.  Since the mix of inputs may differ across 

firms, an input may be relatively scarce somewhere and abundant elsewhere.  This is 

why accounting price vary across units.  If the industry is well organized, such 

differences are leveled.  This observation will be clue to the measurement of industrial 

organization efficiency.  The rule of thumb is as follows.   

 

Reallocate the excess resources of less efficient firms to an efficient firm where the 

accounting price is relatively high.   

 

The rationale of this rule of thumb is that resources are best put to work where they 

are most productive and accounting prices are equal to marginal productivities.  

Market prices do not have the power to signal where resources are best put to work, 

simply because they are equal for different firms.  On the product side the relationship 

is the opposite. 

 

Idiosyncratic accounting prices are higher for outputs which are produced relatively 

abundantly. 

 

This result is perhaps paradoxical, because we tend to associate abundance with low 

prices.  However, large-scale production drains resources and, therefore, is costly 

indeed.  The negative relationship between quantity and price is a property of demand 

functions, whereas here we analyze the supply side of a firm.  Then the relationship is 

opposite indeed. 
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Recall that we have firms i with input vectors x
i
 and output vectors y

i
.  We calculate 

the maximally producible output ey
i
, given the input xi and the practices (x

i
, y

i
), see 

program (1), where symbol e stands for the expansion factor to be maximized.  The 

dual equation (2) generates the accounting prices of the inputs, w1, …, wk, and of the 

outputs, p1, …, pl.  (Here k and l are the numbers of the inputs and the outputs, 

respectively.)  The problem is that these prices are specific to the object we 

benchmark: firm I, because inputs may be scarce at some firms and abundant at others 

and outputs may be produced in costly volumes. 

 

In the inequalities of program (1) the intensities θ1, ..., θI are the variables and the 

right hand sides are firm specific and prompt the accounting prices to be idiosyncratic.  

Imagine that we have the power to improve the performance of firms not only by 

letting them adopt best practices, but also by reallocating their resources.  The formal 

analysis involves the assessment of the overall efficiency of the industry by 

calculating how much more total output it could produce given its total input.  Instead 

of benchmarking firms, we benchmark the entire industry.  The benchmarking 

continues to be done on the same reference group of peers, i.e. on its own firms and 

not on others.  This procedure amounts to replacement of the right hand sides of 

constraints (1) by the total industry resources or inputs x1, ..., xk and (potential) 

outputs ey1, ..., eyk, where e is the expansion factor, as before.  These total figures are 

defined by the following equations: 

  

1 1

1 1 1

1 1

1 1 1

, , ,

, , .

I I

k k k

I I

l l l

x x x x x x

y y y y y y

= + + = + +

= + + = + +

… … …

… … …

       (8)  

 

The overall efficiency of the industry is the inverse of the expansion factor, e, where 

the latter is the solution to benchmarking program (1) with equation (8) used to 

modify the right hand sides:  

 

1 , , , 0

1 1

1 1 1 1 1

1 1

1 1 1 1 1

max :

, ,

, ,

I e

I I

I k k I k

I I

I l l I l

e

x x x x x x

y y y e y y y e

θ θ

θ θ θ θ

θ θ θ θ
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…
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… … …

    (9) 
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As we did in Section 2 for firm i, associate input and output accounting prices w1, …, 

wk and p1, …, pl with benchmarking program (9).  The attractive property of these 

prices is that they measure the marginal productivity of inputs and outputs to the 

industry as a whole.  The accounting prices thus constructed are independent of the 

firm under consideration. 

 

The resolution of the weighting problem rests on the replacement of firms scarcities 

and abundances by their overall counterparts.  For a single-output industry the 

accounting prices of a firm with a representative mix of inputs are the ones which 

reflect the values to the industry as a whole, in the sense of marginal productivities.  

An analogous observation can be made for a single input-multiple output industry.  

The performance weights generated by the benchmarking program of a firm with a 

representative mix of scores agree with the optimal ones (relevant to the industry as a 

whole).  There is no need to identify the firm of which the accounting prices can be 

used to measure and compare the performance of all units.  It suffices to solve the 

industry’s benchmarking program, (9).  The output contains the shadow prices. 

 

Having settled the issue of weighting performance dimensions, let us now tackle the 

issue of ranking.  We employ the input and output accounting prices w1, …, wk and p1, 

…, pl associated with benchmarking program (9).  The efficiency of firm i is given by 

the revenue/cost ratio (6).  The weights are independent of the firm!  The firms are 

considered machines which transform inputs into outputs.  The outputs are aggregated 

using the weights p1, …, pl and the inputs with the weights w1, …, wk.  Expression (6) 

measures efficiency as aggregated output per unit of aggregated input.  The theory of 

Section 3 applies, in particular the observation that efficiency is a measure between 

zero and one. The reason is that the duality analysis—see equation (4) by which the 

value of the outputs is less than or equal to the value of the inputs—happens to be 

independent of the object that is benchmarked (i.e. firm i in Section 2 or the entire 

industry in the present Section). 

 

5. Economies of scale 
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There are four types of returns to scale, namely constant returns, decreasing returns, 

increasing returns, and variable returns to scale.  The principles are easiest understood 

for a single input-single output production unit, where the input and output are 

denoted by x and y, respectively. 

 

 

    y         y       y 

 

 

 

 

 

 

 

 

              x            x          x 

 

Figure 4.  Constant, decreasing, and increasing returns to scale defined. 

In each panel input is along the horizontal axis and output along the vertical.  The 

unbroken lines are below the production function.  The thin dashed lines are above the 

production function and, therefore, not feasible. 

 

 

In Figure 4 the first panel represents the case of constant returns to scale. An increase 

in the input quantity yields a proportionate increase in the output quantity.  The 

second panel represents the case of decreasing returns to scale.  Here the returns of 

additional input are less than proportionate, for example 1% of extra input yields only 

0.9% of extra output.  The third panel represents the case of increasing returns to 

scale, where the returns become more than proportionate. 

 

If there are constant returns to scale—the left panel—any feasible activity, 

represented by an input-output combination (x, y) on the graph (or under it, but that 

would be wasteful) can be run with any nonnegative intensity, θ.  If (x, y) is feasible, 

then so are (θx, θy) with θ ≥ 0.
4
  In other words, if a point is feasible, then so is any 

other point on the half-line through that point and the origin.  However, if there are 

decreasing returns to scale—as in the central panel of Figure 4—any feasible activity 

can be run with lower intensity only.  In other words, if (x, y) is feasible, then so are 

                                                 
4
 (θx, θy) can be denoted briefly by θ(x, y). 
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(θx, θy) with 0 ≤ θ ≤ 1.  If a point is feasible, then so is any other point on the line 

unbroken segment connecting that point with the origin.  Finally, if there are 

increasing returns to scale—as in the right panel—any feasible activity can be run 

with higher intensity only.  If (x, y) is feasible, then so are (θx, θy) with θ ≥ 1.  In 

other words, if a point is feasible, then so is any other point on the unbroken outer 

half-line through the point, away from the origin.  These observations are summarized 

in Table 2. 

 

 

Returns to scale Feasible intensities Geometry Panel in Figure 1 

Constant 

Decreasing 

Increasing 

θ ≥ 0 

0 ≤ θ ≤ 1 

θ ≥ 1 

Half-line 

Line segment 

Outer half-line 

Left 

Central 

Right 

 

Table 2.  Returns to scale and feasible intensities. 

 

 

Now let me turn to the case of variable returns.  First I review some basic production 

theory.  A flexible form for a production function, is the S-shaped function.  It 

features first increasing and eventually decreasing returns to scale, see Figure 5. 
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Figure 5.  An S-shaped production function. 

Input is along the horizontal axis and output along the vertical.  There is a fixed cost 

(F). 
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In Figure 5 a minimum quantity of input, F, is required to produce any positive 

amount of output, however little.  This is called the fixed cost or overhead.  Now, if 

output is increased, the fixed cost can be spread among more units and this causes the 

returns to scale to be initially increasing.  The effect peters out though.  For big 

corporations overhead costs—however sizable in an absolute sense—become a small 

percentage of total cost, and another scale effect sets in, namely that of bottlenecks.  

Some inputs are just very hard to increase, think of land, and eventually limit output 

as the variable inputs are increased.  At some intermediate level the two scale effects 

balance and productivity (output-input ratio y/x) is maximal.  This is where the line to 

the origin is steepest, see the straight line in Figure 5.  To the left of this point of 

tangency the returns to scale are increasing and to the right decreasing.  Productivity 

may be maximal in a region, see Figure 6.   
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Figure 6.  Another S-shaped production function. 

Input is along the horizontal axis and output along the vertical.  In the region between 

the dashed lines productivity is maximal. 

 

 

With a little imagination one recognizes an S-shape in Figures 5 and 6.  Better known 

is the so-called U-shaped average cost, the other side of the coin.  The reason is 

simple:  Average cost is determined by input per unit of output, which is x/y or 

inverse productivity.  Since productivity is initially increasing and eventually 

decreasing, average cost is initially decreasing and eventually increasing, hence U-
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shaped.  The U-shaped average cost associated with the production function of Figure 

6 has a flat bottom. 

 

The S-shaped production function is realistic, because it combines set-up costs with 

bottleneck effects.  It is also flexible, because the point of maximal productivity may 

be reached when input is arbitrarily small—in which case the returns to scale are 

decreasing right away—or when input is arbitrarily large—in which case the returns 

to scale remain increasing for all relevant levels of activity.  In other words, the S-

shaped production function encompasses the cases of decreasing and increasing 

returns.  In this sense it is quite general and it is desirable to have a counterpart in a 

multi input-multi output framework for efficiency measurement.   

 

The counterpart exists and is called variable returns to scale. The model is due to 

Afriat (1972) and Førsund and Hjalmarsson (1974) and has been launched in a DEA 

setting by Färe, Grosskopf and Logan (1983) and Banker, Charnes and Cooper 

(1984).  The idea is that fixed costs cannot be dissolved by running firms, including 

their inputs, at small intensities.  One may combine firms, but the level of operation 

must remain the same.  Formally, the sum of the intensities must be one.  A simple 

example illuminates, see Figure 7. 
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Figure 7.  S-shaped production observed. 

Input is along the horizontal axis and output along the vertical.  The fixed cost cannot 

be escaped. 
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Figure 7 features a small firm (the lower dot) and a big one (the upper dot).  It is 

drawn such that the small firm is more productive (more output per input, the line to 

the origin is steeper), but that does not matter and could have been the other way 

round.  The tenet of DEA with variable returns is that any weighted average of the 

observed firms is feasible.  These weighted averages are represented by the line 

segment connecting the two dots.  It is assumed that it is impossible to run single 

activities at lower intensity.  If allowed, variable returns to scale would degenerate 

into decreasing returns to scale.  The variable returns to scale model also exclude the 

possibility to run activities at higher intensities.  Doing so would take us back to the 

case of increasing returns to scale. 

 

An implicit but important assumption of DEA with variable returns to scale is that the 

hypothetical firm representing inactivity—with zero input and zero output—is ruled 

out.  The reason is simple.  If it were allowed, any firm could dissolve its fixed cost 

by averaging out with the inactivity point (the origin in Figure 7) and this trick would 

take us back to the small-is-beautiful world of decreasing returns to scale, such as 

Figure 1, middle panel.  The bottom line is that the smallest observed fixed cost is 

accepted as inescapable. 

 

The relationship between the analysis of returns to scale and data envelopment 

involves a subtle distinction.  The issue can be explained in the context of the simple 

Figure 7.  Perhaps the most natural assumption in this example would be that of 

decreasing returns to scale, for the small unit has a greater output/input ratio than the 

big unit.  The consequent production function is depicted in Figure 8. 
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Figure 8.  Same data as Figure 7, but assuming decreasing returns. 

Input is along the horizontal axis and output along the vertical.  The two points sum to 

the unidentified.  

 

 

Let me explain Figure 8.  Under the assumption of decreasing returns to scale any 

activity can be run at a lower scale as well.  This explains the line segment connecting 

the origin with the small unit and also the one connecting the origin with the big unit.  

At small levels of input the maximum level of output is determined by the 

output/input ratio of the small unit, as it is greater than the output/input ratio of the big 

unit.  Now suppose we command a level of input slightly above the size of the small 

unit.  What is the maximum amount of producible amount?  Well, first employ the 

first unit up to capacity, as it is the more productive.  The remaining available inputs 

are employed in the second unit and increase output beyond the first data point in 

Figure 8, at a rate determined by the productivity of the second data point, which is 

the slope of the dashed chord.  We translate that chord from the origin to the first data 

point and thus continue the production.     

 

Figure 7 shows the tricky difference between scale economies in economic theory and 

DEA.  For example, imagine the total input is reduced to the input of the big unit: an 

accident kills the workers in the small business.  Then it would be optimal to relocate 

workers from the big business to the small business, which is more productive in 

Figure 8.  This would increase output.  Hence the output of the big business is not the 

maximum producible output.  In other words, the second data point resides within the 
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production possibility frontier and the frontier is not the closest envelopment of the 

data. 

 

Although it is not clear if it is desirable, the discrepancy between returns to scale 

assumptions and data envelopment can be resolved.  If we reason like many free 

market economists do, we would argue that if the big business could produce more it 

would produce more and, therefore, it better resides on the production possibility 

frontier.  This mildly dogmatic reasoning can be accommodated by the following 

modification, which is motivated by the analysis of variable returns to scale.  Instead 

of assuming that each firm’s intensity is less than unity (Table 1, decreasing returns), 

assume that the total intensity is less than unity: θ1 + θ2 ≤ 1.  (This is for two units, as 

in Figure 8.  The extension to more units is straightforward.) 

 

 

         y 

 

                 

 

 

 

 

 

 

 

        x 

                                        

 

Figure 9.  Enveloping the data of Figure 7 or 8. 

Input is along the horizontal axis and output along the vertical. 

 

 

In DEA, enveloping the data, output expansion beyond the full utilization of the 

productive, small business is possible only by simultaneously shrinking the utilization 

of that same business.  This process continues gradually until the next unit is fully 

utilized and the first, small unit no longer.  Hence, the connection between the two 

data points in Figure 9.  The consequent frontier is below the one of ordinary 

decreasing returns, depicted in Figure 8. 
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The concept of increasing returns to scale can be modified similarly.  Instead of 

assuming that each firm’s intensity is greater than unity (Table 2, increasing returns) 

we assume that the total intensity is greater than unity. 

 

All the forms of returns to scale we have encountered are applicable to organizations 

with multiple inputs and outputs.  It is a bit messy in the framework of production 

functions, see, e.g., Baumol (1977), but in the application to benchmarking the 

analysis becomes pleasantly crisp.  The different returns to scale cases can be 

described by alternative restrictions on the intensities with which best practices are 

run to assess the potential output of a firm.  Table 3 collects the encountered returns to 

scale cases. 

   

 

Feasible intensities Returns to scale 

Economics Relationship DEA 

Constant 

Decreasing 

Increasing 

Variable 

θi ≥ 0 

0 ≤ θi ≤ 1 

θi = 0 or ≥ 1 

Closed interval 

= 

<= 

=> 

<= 

θi ≥ 0 

θi ≥ 0 and ∑θi ≤ 1 

θi ≥ 0 and ∑θi ≥ 1 

θi ≥ 0 and ∑θi = 1 

 

Table 3.  Returns to scale in economics and DEA. 

 

 

Roughly speaking, Table 3 shows that constant/decreasing/increasing/variable returns 

to scale are a matter of feasible intensities to be any/below unity/above unity/unity.  

Here “intensities” are individual intensities in the economics literature and total 

intensities in the DEA literature.  Under constant returns to scale there is full 

consistency between the two approaches. 

 

Under decreasing returns to scale, there is a one-way consistency.  Here DEA feasible 

intensities are also feasible in the sense of economics.  This means that the feasible 

production possibility set in DEA is smaller than in economics.  Hence the DEA 
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frontier will be closer than the economics frontier.  Hence under decreasing returns 

DEA overestimates efficiency relative to the economic model. 

 

With increasing returns to scale, there is also consistency, but the other way.  Now 

intensities feasible in the sense of economics are also feasible in the sense of DEA 

decreasing returns.  This means that the feasible production possibility set in DEA is 

bigger than in economics.  Hence the DEA frontier will be farther out than the 

economics frontier.  Hence under increasing returns DEA underestimates efficiency 

relative to the economic model. 

 

Variable returns to scale are locally increasing or decreasing, at least at frontier 

points.  Intensities may increase or decrease, respectively.  The feasible set is [1, θmax] 

or [θmin, 1], respectively.  For non-frontier points it is [θmin, θmax].  It is not possible to 

specify these intervals without external information.  Hence in this paper only the 

DEA variant of variable returns to scale will be considered.  The DEA variant is 

restrictive.  Observations are considered efficient, except when they are dominated by 

convex combinations of others.  Variable returns to scale in the sense of DEA are an 

instance of variable returns to scale in the economics sense. 

 

Following our discussion, summarized in Table 3, we can limit the intensities of 

activities.  This amounts to the addition of alternative constraints to program (1).  In 

the case of decreasing returns to scale the condition that an intensity of a benchmark 

(or the sum of these intensities if we take the DEA tack) must be between 0 and 1 

automatically includes the possibility of ignoring bad examples (by setting their 

intensities equal to corner value zero).  This straightforward extension preserves the 

linearity of program (1).  Increasing returns to scale, however, includes the possibility 

θ = 0 as a distinct event, creating a nonconvexity.  Under variable returns to scale this 

complication is happily dissolved again.  The set of admissible intensities is defined 

by the simple summing up condition given in Table 3, which admits smooth 

transitions between potential benchmarks.  The variable returns to scale model also 

inherits the property of S-shaped production function that it encompasses the cases of 

decreasing and increasing returns.  Related to this flexibility is the better fit to the 

data.   As there is empirical support for S-shaped production functions (or U-shaped 

average costs), the variable returns to scale model of benchmarking outperforms its 
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counterparts.  The variable returns to scale model can be used to locate firms, placing 

them in the initial region of increasing returns, the intermediate efficient region of 

constant returns, or the eventual region of decreasing returns. 

 

6. Alternative efficiency measures  
 

In the decreasing returns to scale model we add the capacity constraints, θ1, ..., θI ≤ 1 

(the economics approach) or θ1 + ... + θI ≤ 1 (DEA).  Denoting the shadow prices of 

the separate capacity constraints by τ1, ..., τI ≥ 0, the dual constraints associated with 

the intensity variables become: 

 

 1 1

1, , I I

I
py wx py wxτ τ≤ + ≤ +…  (10) 

 

The dual constraint associated with the final variable (e) is the price normalization 

constraint (3).  If the constraints are pooled (the DEA approach) we have commonality 

of the shadow prices, τ1 = ... = τI.  In either case the difference with the basic model is 

that decreasing returns to scale generate profits.  The profits are determined by the 

shadow prices of the intensity constraints (θ1, ..., θI ≤ 1). 

 

By the phenomenon of complementary slackness positive profit implies that the 

unitary intensity constraint must be binding.  This implies that its nonnegativity 

constraint is not binding.  This implies—once more invoking complementary 

slackness—that there is no slack in the shadow prices of the nonnegativity constraints.  

By the theory of linear programming this means that the inequality for such a firm in 

equation (10) reduces to an equality.  In short, profit τi > 0 implies equality for unit i 

in (10).  Conversely—the logical negation of the last sentence—inequality for a unit 

in (10) must yield no profit, τi = 0.  Incorporating these insights, equation (10) may be 

rewritten as follows: 

 

 j j j j

jpy wx or py wxτ= + <               (11) 
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The left hand side of equation (11) are the benchmarks for the decision unit we assess.  

On the right hand side are units which have positive shadow prices of their 

nonnegativity constraints.  By the phenomenon of complementary slackness these 

units have binding nonnegativity constraints, hence are inactive and, therefore, 

constitute no benchmark.
5
 

 

Efficiency is the inverse of the expansion factor, e.  By the main theorem of linear 

programming e is the value of the bounds in program (1) and the added constraint 

from Table 3.  The former is x
i
, applied to the inputs.  The latter are 1, applied to the 

intensities (individual in the economic frame or total in DEA).  Hence e = wx
i
 + τ1 + 

... + τI, or, invoking price normalization constraint (3), 

  

 1/ ( )i i

I
Efficiency py wx τ τ= + + +…  (12) 

 

Remark on formula (12).  In the DEA variant profit τ1 + ... + τI is replaced by just the 

single (common) profit.  Since this profit depends on the unit we benchmark, i, I 

denote it by τ
i
.  This confirms Table 3 and the ensuing discussion by which the DEA 

efficiency level is greater.  Also, if the unit is its own benchmark, the left hand side 

holds in equation (11), or py
i
 = wx

i
 + τ

i
, so that / ( ) 1i i iEfficiency py wx τ= + = , as 

should be. 

 

In the increasing returns to scale model, the benchmarks can be determined in a 

similar way, albeit that we must now consider the many discrete possibilities 

mentioned before.  Suppose we have done this and let I be the subset of active units j 

in program (1) (augmented with an increasing returns condition of Table 3), for which 

θj are positive.  The other, inactive, units do not contribute to the determination of the 

maximal producible output and, therefore, maybe ignored.  I relabel the units such 

that the active ones are listed up front, i = 1, ..., I.  The inactive units are i = I + 1, ..., 

I.  It follows that program (1) may be replaced by, 

  

                                                 
5
 It is possible that τj = 0 in equation (11).  This corresponds to a benchmark for which neither the 

nonnegativity constraint (as signaled by the equality) nor the capacity constraint (as signaled by the 

zero value of its shadow price, τj) is binding, i.e. the unit is hovering at partial capacity: 0 < θj < 1. 
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1

1 1

, , 1, 1 1max : ,
I

I i I i

e I I
e x x x y y y e

θ θ
θ θ θ θ

≥
+ + ≤ + + ≥

…
… …  (13) 

 

Program (13) modifies program (1) in two ways: the value of the lower bounds, 0, 

becomes 1, and the replacement I becomes I.  Hence the dual equation is the same as 

in the basic case, (10) without τ’s, and with I instead of I: 

   

 1 1, , I Ipy wx py wx≤ ≤…  (14) 

 

If an inequality in (14) is strict (<), the slack is positive.  Since the slack is the shadow 

price of the ≥ 1 constraint, the intensity equals 1 (by the phenomenon of 

complementary slackness).  By the main theorem of linear programming e is the value 

of the bound in program (1), x
i
, and the added constraint from Table 3, number(s) 1 

(individual in the economic framework or total in DEA).  The added constraint is 

flipped compared to the decreasing returns case.  Hence the shadow prices are τ1, ..., τI 

≤ 0: profits turn losses.  With this modification, efficiency formula (12) and the 

remark on the latter remain valid. 

 

Last but not least, let me address the case of variable returns to scale.  The analysis 

follows the decreasing returns to scale case, with two tricks added.  The first trick is 

that we now add a single capacity constraint to the basic model: θ1 + ...+ θI = 1.  I 

denote the shadow price of this constraint by τ.  Since the constraint is an equality, 

this shadow price is now unsigned and dual constraint (10) becomes as follows: 

  

 1 1 , , I Ipy wx py wxτ τ≤ + ≤ +…  (15) 

  

The main difference of equation (15) compared to the basic model is that with 

variable returns to scale accounting prices admit profits or losses.  Moreover, 

compared to the case of decreasing returns the accounting prices are now such that the 

profit is uniform across the benchmarks.  Efficiency remains given by the DEA 

variant of equation (12), with τ1 + ... + τI replaced by τ
i
 (see the remark): 

 

 / ( )i i iEfficiency py wx τ= +  (16) 
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The variable returns to scale model seems the most popular benchmarking tool.  It 

envelops the data closely, hence reduces the estimates of inefficiency, because the 

latter is measured by the gap between an observation and the frontier representing 

potential output.  This reduction is considered not bad, because it offsets a 

shortcoming of DEA, namely its tendency to overestimate inefficiency.
6
 

 

Scale returns may vary by nature (constant/decreasing/increasing/variable) and by 

frame of reference (economic/DEA).  The alternatives are represented by alternative 

constraints on the feasible intensities (Table 3).  These translate in alternative shadow 

prices.  In view of the (non)convexity of the different cases it is perhaps surprising 

that a single efficiency formula, (12), applies to all.  The profits are nonnegative 

(decreasing returns), nonpositive (increasing returns), or either (variable returns).  

Moreover, the profits are firm specific in the economics framework and uniform in 

DEA. 

 

A central concept in industrial organization is the industry production function.  The 

concept is best introduced for a single-input/single output industry.  Let the 

production function be F.  Examples are depicted in Figure 1.  With I firms the 

producible output is y = FI(x) = max F(x
1
) + ... + F(x

I
) subject to x

1
 + ... + x

I
 = x.  With 

free entry (and exit) the industry production function is defined by y = maxI FI(x). 

 

With constant returns to scale the number of firms is irrelevant and the program that 

defines the potential output of the firm, (1), also specifies the industry output. 

 

Ever since McKenzie (1959) it is known that if the production function features 

decreasing returns to scale, the free entry industry production function has constant 

returns to scale, with the optimal I = ∞.  Because of this incompatibility it is common 

to preserve the number of firms, I.  Let us return to the example of two firms 

(discussed in section 3).  Combining Figures 8 and 9 and adding the total input/total 

output bundle, we get Figure 10. 

 

                                                 
6
 The problem is that DEA is sensitive with respect to errors of measurement, particularly of best 

practice observations.  Overstatement of output or understatement of input may falsely identify 

decision making units as benchmarks and, as a consequence, throw back the other decision making 

units.  The latter are thus suggested being relatively inefficient, but it is a fluke in the data. 
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Figure 10.  Same data as Figure 8, total input/total output added. 

Input is along the horizontal axis and output along the vertical. 

 

 

What is the value of the industry production function at the level of total input?  Well, 

it depends on the framework.   The upper graph represents the economics production 

function and the lower graph the DEA production function or envelop.  To determine 

the value of the industry production function, in either case we may reallocate the 

inputs of the two firms, given by x
1
 and x

2
, to x

1
’ and x

2
’, respectively, such that total 

input is preserved—x
1
’ + x

2
’ = x

1
 + x

2
—and apply program (1) to each part, x

1
’ and 

x
2
’.  The ‘new’ firm, now commanding x

1
’, runs the activities (represented by the two 

firms) with intensities 1 1

1 2,θ θ .  The new firm now commanding x
2
’ runs the activities 

with intensities 2 2

1 2,θ θ .  By linearity, this is equivalent to running the two activities 

with intensities 1 2 1 2

1 1 2 2,θ θ θ θ+ + .  Call these θ1, θ2.  The question of feasibility (not 

using more than total input) can be addressed by transforming the intensity constraints 

defining alternative returns to scale (on the superscripted θ’s) from the level of the 

firms to the level of the industry (the non-superscripted θ’s). 

 

In DEA the decreasing returns to scale constraints are 1 1

1 2 1θ θ+ ≤  and 2 2

1 2 1θ θ+ ≤ .  

The industry constraint becomes θ1 + θ2 ≤ 2 = I.  Put numbers on Figure 10, say 

inputs 1 and 3 and outputs 2 and 4, respectively.  Consider a departure from the 

observed intensities, θ1 = θ2 = 1, to say θ1 = 1.1, θ2 = 0.9.  The inputs change by 0.1 – 

0.1×3, which is feasible.  The outputs change by 0.2 – 0.4, which is suboptimal.  We 
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may also consider a contraction of θ1, but the released input will be less productive in 

the other activity.  Hence θ1 = θ2 = 1 determines the value of the 2 firms industry 

production function under decreasing returns to scale of the DEA variety.    

 

In the economics approach the returns to scale constraints are 1 1

1 2, 1θ θ ≤  and 2 2

1 2, 1θ θ ≤ .  

The industry constraint becomes θ1, θ2 ≤ 2 = I.  In Figure 9 it is optimal to maximize 

the small, more productive process: θ1 = 2.  The residual input (net of the 

endowments), 1 + 3 – 2×1 = 2, determines the activity level of the other process, 

hence θ2 = ⅔.  

 

One rule holds for either decreasing returns to scale approach (see Table 3): The 

transition to the industry production function is achieved by replacement of 1 by I as 

the intensity constraint.  This procedure reflects the pooling of the inputs—x
1
’ + x

2
’ = 

x
1
 + x

2
. 

 

The case of increasing returns to scale is also defined by separate intensity constraints 

(economics) or a pooled one (DEA).  The difference is that the inequalities are flipped 

from ≤ to ≥ 1.  Hence the same procedure holds for increasing returns to scale.  

 

As defended in section 3, of variable returns to scale only the DEA variant is 

considered.  It is defined by the condition that for each firm activity intensities sum to 

unity.  Repeating the reallocation argument introduced in our discussion of decreasing 

returns, this translates into the condition that intensities sum to the number of firms.  

Hence the same procedure holds for variable returns to scale. 

 

The final step is to allow for free entry, varying the number of firms.  This is 

problematic, particularly when there are variable returns to scale.  The problem is 

well-known for single input-single output industries with an S-shaped production 

function, which translates into U-shaped average costs.  Output is maximized when 

firms minimize unit costs.  The optimal number of firms is output divided by the 

output produced at minimum unit cost, but this number need not be an integer.  This 

integer problem diminishes as the optimal number becomes large, and even 

disappears completely at some point if average costs are flat-bottomed (minimized at 

an interval of outputs instead of a single one).  There are bounds for the magnitude of 
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this problem, and they may be reestablished in the present DEA context.  If the 

problem is ignored, admitting real values of the number of firms, I, it can be shown 

that the industry intensity constraints reduce to nonnegativity constraints, even in all 

three cases of scale economies.  If the problem is not ignored, the optimal integer 

number of firms must be determined, for every total input/total output combination, 

by solving the following variable returns to scale industry program for every integer 

number of firms, I’. 

 

 
1 1, , 0, ',

1 1 1 1

1 1

max :

, ( )

I I I e

I I I I

I I

e

x x x x y y y y e

θ θ θ θ

θ θ θ θ

≥ + + =

+ + ≤ + + + + ≥ + +

… …

… … … …

 (17) 

 

The difference vis-à-vis the efficiency program for a firm is in the coefficient of the 

expansion factor, e, and in the input and intensity bounds.  That coefficient change 

merely affects the dual price normalization constraint.  The bounds changes merely 

affect the value of the primal or dual program.  Dual constraint (15) is not changed.  

Efficiency equation (16) becomes equation (18). 

 

 1 1( ) / [ ( ) ]I IEfficiency p y y w x x Iτ= + + + + +… …  (18) 

 

If the integer problem is not important, τ = 0 in equation (18). 

 

7. Firms and industrial organization efficiencies 

 

We have seen how the measurement of efficiency can be transplanted from the firm to 

the industry, under alternative returns to scale assumptions.  The industry efficiency, 

(18), is less than the market share weighted harmonic mean of the firm efficiencies, 

(16), and the ratio of the two is the efficiency of the industrial organization, as will be 

detailed in this section.  Point of departure is industry program (9).  Potential output is 

determined by not only letting firms adopt best practices, but also by relocating 

resources between them.  In other words, potential industry output exceeds the sum of 

the potential firm outputs.  Since the gap between observed output and potential 

output measures inefficiency, it follows that the efficiency of the industry is less than 
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what one would expect on the basis of the firm efficiencies.  More precisely, ten Raa 

(2010) has shown that 1/e ≤ 1/(s
1
e

1
 + … + s

I
e

I
), where s

i
 are the market shares of the 

firms, py
i
/p(y

1
 + … + y

I
), evaluated at the shadow prices of program (9) (the Lagrange 

multipliers of the output constraints).  The right hand side of this inequality is the 

harmonic mean of the firm efficiencies, 1/e
1
, …, 1/e

I
.  If, for example, the harmonic 

mean of the firm efficiencies is 80%, but the industry efficiency is 60%, the allocation 

of the resources between the firms is such that full firm efficiency attains only 60/80 = 

75% of full industry efficiency and we say that the efficiency of the industrial 

organization is 75%.  Formally, industrial organization efficiency is defined by the 

ratio of industry efficiency to mean firm efficiency: ε
IO

 = (s
1
e

1
 + … + s

I
e

I
)/e. 

 

Full efficiency of an industry requires that all firms are efficient and that the industrial 

organization is efficient.  Ten Raa (2010) has shown that a necessary and sufficient 

condition is that the industrial organization is supportable (Sharkey and Telser, 1978), 

meaning invulnerable to entry.  This one expects in a contestable market (Baumol, 

Panzar and Willig, 1982). 

 

An immediate consequence of the definition of industrial organization efficiency is 

that industry efficiency is the product of mean firm efficiency and industrial 

organization efficiency.   

 

We commingle efficiency change and technical change into productivity growth and 

bring in industrial organization change.  For a solid conceptual foundation consider 

the structure of an efficiency program.  Efficiency is the inverse expansion factor, ε = 

1/e.  It is a function of the parameters in the efficiency program, such as (1).  The 

right hand sides of the constraints feature the inputs and outputs of the unit of which 

the efficiency is assessed, (x
i
, y

i
).  The left hand sides feature the inputs and outputs of 

all firms, which we write formally by (X, Y), where X is the matrix of all inputs 

(across firms), and Y the matrix of all outputs. 

 

The efficiency of firm i is a function of its (own) input/output vectors and of the 

family of all these vectors (representing the industry): ε
i
 = 1/e

i
 = f((x

i
, y

i
), (X, Y)), 

where function f summarizes the efficiency program, presenting the inverse of the 

expansion factor as a function of the program parameters.  The data, ((x
i
, y

i
), (X, Y)), 
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are a function of time and, therefore, so is efficiency.  Efficiency change is defined by 

the percentage expression EC = (dε
i
/dt)/ε

i
.  Total differentiation of efficiency function 

f yields the following equation: 

 

( ) / ( ) /
i i

i i

f x f y f X f Y
EC f f

x t y t X t Y t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
                                   (19) 

 

The first term on the right hand side of equation (19) measures the contribution of the 

firm, (x
i
, y

i
), by contracting its inputs or expanding its outputs, in short by improving 

its output/input ratio.  Hence this term defines productivity growth, 

( ) / .
i i

i i

f x f y
PG f

x t y t

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
  In the second term on the right hand side of equation 

(19) the firm data are fixed, but the environment changes.  Now we must reason 

carefully.  If there is technical progress, the efficiency of the firm will be lower in the 

next point of time, as its potential output will be greater under the new technology.  

Hence the effect of the second argument measures technical change, but with a minus 

sign: ( ) /
f X f Y

T f
X t Y t

∂ ∂ ∂ ∂
= − +

∂ ∂ ∂ ∂
.  If we rearrange the terms in equation (19), we 

conclude that PG = EC + TC: productivity growth is the sum of efficiency change and 

technical change. 

 

All these concepts have discrete time variants, of which Malmquist indices have 

attractive theoretical properties.  For productivity growth the derivation is as follows.  

Since the derivative of lnf is 1/f, 
ln ln

,
i i

i i

f x f y
PG

x t y t

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
  which in turn may be 

approximated by 1 1
1 1

( , , , )
ln ( , , , ) ln ( , , , ) ln .

( , , , )

i i
i i i i t t
t t t t i i

t t

f x y
f x y f x y

f x y

+ +

+ +

⋅ ⋅
⋅ ⋅ − ⋅ ⋅ =

⋅ ⋅
  (Subscripts t 

and t+1 represents points in time, not components.)  The dots represent the 

environment, (X, Y); evaluating it in times t and t + 1 and taking the average, 

1 1 1 1 1 1

1 1

( , , , ) ( , , , )
ln ,

( , , , ) ( , , , )

i i i i

t t t t t t t t

i i i i

t t t t t t t t

f x y X Y f x y X Y
PG

f x y X Y f x y X Y

+ + + + + +

+ +

=  which can be approximated by 

1 1 1 1 1 1

1 1

( , , , ) ( , , , )
1.

( , , , ) ( , , , )

i i i i

t t t t t t t t

i i i i

t t t t t t t t

f x y X Y f x y X Y

f x y X Y f x y X Y

+ + + + + +

+ +

−   It is tradition not to subtract the one, so 
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a Malmquist productivity index is simply defined by the geometric mean of 

productivity growth rates measured against the backdrops of times t and t + 1, 

1 1 1 1 1 1

1 1

( , , , ) ( , , , )
,

( , , , ) ( , , , )

i i i i

t t t t t t t t
t i i i i

t t t t t t t t

f x y X Y f x y X Y
M

f x y X Y f x y X Y

+ + + + + +

+ +

= and a Malmquist index of say 1.02 

thus represents 2% growth.  To evaluate a Malmquist productivity index one must 

determine four values of function f, hence solve four linear programs.  

 

If we apply this analysis to an industry instead of a firm i, we trace the effects in ε = 

f((x, y), (X, Y)) and get the same decomposition, but since industry efficiency change 

is the product of mean firm efficiency and industrial organization efficiency, we 

obtain that industry productivity growth equals industrial organization efficiency 

change plus mean firm efficiency change plus technical change.  Ten Raa (2010) 

details the straightforward but tedious decomposition, with the result 

1 1 1

1 1 1 1 1 1 1 1 1 1 1

/ (( , ),( , )) (( , ),( , )) (( , ),( , ))
.

/ (( , ),( , )) (( , ),( , )) (( , ),( , ))

i i iIO
t t t t tt t t t t t t t t

t IO i i i

t t t t t t t t t t t t t t

s f x y X Y f x y X Y f x y X Y
M

s f x y X Y f x y X Y f x y X Y

ε

ε

+ + +

+ + + + + + + + + + +

= ⋅ ⋅
∑

∑
i

Symbols without superscripts represent industry totals, summed inputs or outputs, 

with all summations over firms i = 1, …, I.  The first quotient is the index for 

industrial organization efficiency change, the second for mean firm efficiency change, 

and the third for technical change. 

 

So far we have remained silent about entry and exit; the number of firms, I, has been 

constant.  The idea that industry efficiency is a combination of firm efficiencies and 

organization efficiency is an aggregation result for firms that can be extended to 

groups of firms.  Entry can be modeled as an extension of the number of firms and 

exit as the transition to dormant, x
i
 = 0, y

i
 = 0.  The number of firms becomes I + E, 

where the first term represents the incumbents and the second the entrants.  We now 

have that industry efficiency is less than the harmonic means of the incumbent and 

entrant efficiencies, ε = 1/e = f((x
I
 + x

E
, y

I
 + y

E
), (x, y)) ≤ 1/[s

I
/f((x

I
, y

I
), (X, Y)) + 

s
E
/f((x

E
, y

E
), (X, Y))] = 1/(s

I
/ε

I
 + s

E
/ε

E
), where s are the market shares of total 

incumbent output y
I
 and total entrant output y

E
 (both evaluated at the shadow of the 

industry efficiency program) and x
I
 and x

E
 represent total incumbent input and total 

entrant input.  The relative gap, ε
E
 = f((x

I
 + x

E
, y

I
 + y

E
), (X, Y))[s

I
/f((x

I
, y

I
), (X, Y)) + 

s
E
/f((x

E
, y

E
), (X, Y))], measures entry efficiency.  We now have that industry 
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productivity growth equals entry efficiency plus mean incumbent and entrant 

efficiency change plus technical change: 

1 1
1

1 1 1 1 1 1 1 1 1 1 1

/ (( , ),( , )) (( , ),( , )) (( , ), ( , ))
.

/ (( , ), ( , )) (( , ),( , )) (( , ), ( , ))

i i i

t t t t tE t t t t t t t t
t t i i i

t t t t t t t t t t t t t

s f x y X Y f x y X Y f x y X Y
M

s f x y X Y f x y X Y f x y X Y
ε + +

+

+ + + + + + + + + + +

=
∑

∑
i i i

It is possible to further disentangle the middle factor, representing mean incumbent 

and entrant efficiency change, in individual firm effects and intra-organization effects 

(of the incumbents and of the entrants), but I leave that for future work.   

 

8. Conclusion 

 

In this paper we have shown that a simple linear program that can be used to measure 

the efficiency of a firm relative to the industry it belongs to can be applied to the 

industry as a whole and that the solution decomposes the efficiency of the industry in 

firm effects and an industrial organization effect.  The simple linear programming 

technique can even be extended to dynamic analysis and then encompasses the 

measurement of productivity growth and the contributions of a better industrial 

organization and entry and exit.  
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