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Abstract

In this paper, we extend Schweizer’s open club model to clubs with goods that have a semipublic

nature rather than a pure public nature. We study limit core allocations, which are those allocations

that remain in the core of a replicated economy. An equivalent notion for open clubs with pure public

goods was Schweizer’s concept of club efficiency under a variable number of economic agents. We

show that given certain conditions, the equivalence of limit core allocations and Lindahl equilibria

holds for a wide range of open club economies with semipublic club goods. We also show that

extension to a more general class of open club economies seems implausible.

D 2004 Elsevier B.V. All rights reserved.
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1. Club efficiency and Lindahl pricing

It is well known that the classical Debreu–Scarf convergence of the core and the set of

competitive equilibria in a replicated economy with private goods does not extend well to
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economies with public goods under the standard concept of blocking. Indeed, the well

known counterexamples to the Edgeworth conjecture demonstrate that, in the absence of

crowding, the per capita cost of supplying a given vector of public goods decreases with

the number of agents, thus rendering small coalitions relatively impotent. There are, in

principle, two basic methods to overcome this difficulty. One consists in switching to

alternative equilibrium concepts, thus bblowing upQ the set of equilibria in order to match

the larger set of core allocations (Mas-Colell, 1980). The other reduces the set of core

allocations by allowing for bcongestion effectsQ (Roberts, 1974; Vasil’ev et al., 1995). This

paper belongs to the latter category.

Lindahl equilibrium is a well-known solution concept in the general equilibrium theory

of public goods, but its competitive basis is shaky because of the mismatch with the core.

In this paper, we show that if the public goods are not pure but feature some form of

rivalry in terms of opportunity costs, Lindahl pricing within a club with a variable

membership base has a firm competitive basis.

We do so in the context of Schweizer’s (1983) model of an open club economy. This

model assumes that the club has a variable membership base, drawn from an unlimited

pool of potential members. The issue of how to partition a given (closed) population of

agents in a number of clubs is not addressed. The possible variation of the numbers of

consumer amounts to replication of the economy, and an allocation is now called club

efficient if it cannot be improved upon under varying membership bases. To explain the

concept further, a membership profile with private and club good consumption plans (for

each type of agents) is feasible if the consumption plans can be provided with the initial

endowment of the club members, and it is club efficient if no other feasible membership

profile yields higher utility to all members. Schweizer (1983) showed that a club efficient

allocation must be a competitive, Walrasian equilibrium for an economy with public and

private goods and that agents whose numbers are variable do not and should not pay for the

public good. His results consolidate the limit core theorem and the Henry George theorem,

respectively.2

One of the problems of the original formulation of Schweizer (1983) is that the use of a

pure public good is unrealistic due to the noncrowding hypothesis. In this paper, we try to

remedy this particular problem and introduce intermediate types of goods, denoted as

bclub goods.Q These club goods can be purely private or purely public or semipublic. We

investigate when a club efficient allocation is a Lindahl equilibrium.

In our formulation, crowding does not enter the utility functions directly. The utility of

an agent depends exclusively on his or her own consumption of private goods and club

goods. The degree of bpublicnessQ of the club goods is determined by the costs of

production. A cost function expresses the input requirements of a membership profile (the

composition of a club by type of agents) for each level of club goods consumption (possibly
2 It can be shown that club efficiency is equivalent to the Debreu–Scarf limit core property, at least for economies

with purely private goods. An indirect proof can be based on noting that Schweizer (1983) showed equivalence of

the Walrasian equilibrium concept and club efficiency. Debreu and Scarf (1963) showed equivalence of Walrasian

equilibria and the limit core. Hence, club efficiency, the Walrasian equilibrium concept, and the limit core

property are the same.
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varying by type of agents). In the polar cases of private and pure public goods, the cost

function is linear and constant, respectively.

The main contribution of this paper is the delineation of cost functions of club goods

such that a club efficient allocation is a Lindahl equilibrium. One may expect to encounter

the membership profile of such a club efficient allocation in an economy with a continuum

of agents, not plagued by integer problems. More interesting, the prices supporting a club

efficient allocation are Lindahl prices.

The public goods literature incorporates a tricky division as regards the exogeneity or

endogeneity of the number of consumers and the level of the public goods. In the older

literature, going back to Foley (1970), the number of consumers is fixed and the level of

the public goods is variable. However, the public goods are neither pure nor fixed but

determined by preferences. Foley defined a Lindahl equilibrium as a set of prices,

economy-wide for private goods, and individualized for public goods, such that markets

clear. He proceeded to demonstrate that Lindahl equilibria are in the core. Ellickson (1973)

showed that a Lindahl equilibrium need no longer be in the core when public goods are not

pure but have opportunity costs that increase with the number of consumers; he also

showed that the core may even be empty. Convexity (in particular of technology) plays no

role in the proof that a Lindahl equilibrium allocation is in the core when crowding is

present but does play a role in showing that any core allocation is a Lindahl equilibrium

allocation and in showing that the set of core or Lindahl equilibrium allocations is

nonempty when crowding is present. We follow Ellickson in admitting nonpure public

goods but assume some convexity at the aggregate level of technology to keep scope for

positive results.

Milleron (1972) considered a replicated economy with pure public goods. The trouble

with pure public goods is that they are not replicated along with the population in the

economy and their per capita opportunity costs vanish. To keep the Lindahl equilibria in

the core, Milleron changed the preferences or endowments of the consumers as the

economy becomes large. Even then, the core does not shrink to the set of Lindahl

equilibria. Vasil’ev et al. (1995) were able to let the core shrink to the set of Lindahl

equilibria but also had to change the consumers’ utility functions as they were replicated.

Conley (1994) obtained this result assuming that consumers are either asymptotically

satiated or strictly nonsatiated in public goods; these are extreme polar cases of consumer

utility functions. We need no such assumptions in the context of the open club model with

semipublic club goods.

The roles of consumer numbers and public good levels were reversed in Schweizer

(1983). He solved for allocations that included a club membership profile. On the other

hand, he fixed the level of the public goods and devised bLindahlianQ price support of

club efficient allocations but had to assume that some types of agents are given in fixed

numbers. The other types escape taxation as they can bring in more members of their

types and thus may spread the burden of their collective contribution to the public good.

We follow Schweizer in letting the numbers of consumers be variable, but the public

goods are neither pure nor fixed. At least in principle, the use of the open club model

may drive the main result that Lindahl equilibria exhaust the core, simply by increasing

the set of Lindahl equilibria, but we do not believe so. The Lindahl equilibria we analyze

feature not only utility maximizing agents but also profit maximizing club admin-
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istrators. Members pay their marginal cost. Hence, there are pricing rules for all club

goods. The multiplicity of equilibria is no larger than in the Arrow–Debreu model. The

main use of the open membership base is that the analysis is not plagued by the integer

problem.

We look at the provision of club goods that in principle have a semipublic nature. It

is assumed that these commodities are provided through the club and therefore are

principally locally collective. But their rivalry properties might be different from that of

a purely local public good. We model this by means of a cost function that associates

input requirements with members’ demands for these club goods. Our main theorem

states that, for certain club goods with a semipublic nature, the notions of club

efficiency and Lindahl equilibrium remain equivalent. For this, we extend Schweizer’s

(1983) equivalence theorem (of Walrasian equilibrium and club efficiency) to a model

in which the aggregation function for the club goods has a certain specification and

certain properties. We also show that it cannot be expected that our Lindahl equivalence

result can be extended further to more general specifications of the aggregation

function.

The second section develops the model, Section 3 states and proves our equivalence

result, and Section 4 concludes the paper with a discussion of the result, its relationship to

the literature, and its implications.
2. Clubs and semipublic club goods

In this section, we introduce a model of an open club economy consisting of a

membership base, an allocation of private goods consumed, and an allocation of so-called

club goods, which are provided collectively. The membership base as part of our model of

a club represents the bopennessQ of the club. In our theory, we use a club as a replication

device.

We consider an economy with a finite set of consumer types denoted by t=1, . . ., T. A
vector naR

T
þ represents a profile of a coalition of economic agents, comprising nt

members of type t. A profile naR
T
þ forms the membership base of the club economy.

Throughout, we assume that agents of the same type are treated equally, i.e., agents of the

same type consume the same quantities of private as well as club goods. This assumption

enables us to discuss replication properly.3

We consider a situation with S aN private goods. Agents of type t are endowed

with a commodity bundle wtaR
S
þ. It is assumed that wtN0 for all t.4 Private

consumption of an agent of type t is now given by xt þ wtaR
S , where xt denotes the net

consumption of type t. A net consumption plan is now a vector of net consumption

bundles x ¼ x1; N ; xT ÞaR
S T

�
. Total net consumption of private goods in a club with

membership base naR
T
þ is represented by x

P ¼ n1x1; N ; nTxT ÞaR
S T

�
.

3 In the standard model of a replicated pure exchange economy, the equal treatment property can be shown to hold

if preferences are strictly convex (Debreu and Scarf, 1963).
4Here, we define wtN0 if wt=0 and wtp0.
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There are maN club goods. Each club good is provided collectively by the club to its

members. Again assuming equal treatment, an agent of type t now consumes the club

goods at levels given by a vector ytaR
m
þ. The consumption plan for club goods is

represented by the vector y ¼ y1; N ; yT ÞaR
mT
þ

�
. Total consumption of club goods in a club

with membership base naR
T
þ is now represented by y

P ¼ n1y1; N ; nTyT ÞaR
mT
þ

�
. The

premise of this paper is that the total consumption of club goods (by type) determines cost.

Cost must be a function of the product of population and the bundle consumed by each

type. This functional form specification paves the way for the competitive foundation of

Lindahl prices. This is formalized as follows.

Modelling hypothesis. The production technology is represented by the induced cost

function C: RmT
þ YR

S
þ which for every membership base naR

T
þ and consumption plan

yaR
mT
þ assigns to the total consumption bundle yP ¼ n1y1; N ; nTyT ÞaR

mT
þ

�
a bundle of

private goods C y
P ÞaR

S
þ

�
that is used to create the club goods at these levels.5

The modelling hypothesis equates the marginal cost of a member with the marginal cost

of his or her club bundle. Hence, entry fees or subsidies depend only on the consumption

bundle of a particular type. This is the quintessence of Lindahl prices and explains why

they can support a club efficient allocation.

This framework, however, encompasses a number of interesting cases. The club goods

have a purely private nature if C (ȳ)=C̃(AT
t=1n

tyt), where the cost function C̃C : Rm
þYR

S
þ

represents a standard private goods production technology converting the S private good

inputs into m private good outputs. (This reduces the model to the standard setting of a

pure exchange economy).

Second, the club goods have a purely public nature in the sense of Schweizer (1983) if

C y
PÞ ¼ ZaR

S
þ

�
for every y

P aR
mT
þ , where Z is some fixed input vector.

Finally, there are many intermediate possibilities, giving the club goods a semipublic

nature. For example, if C( ȳ)=C̃(maxt=1,. . .,T ntyt), where the max operator on R
m is

defined by maxi( y
1,y2)=max( yi

1, yi
2), i=1,. . ., m, and, as before, C̃C : Rm

þYR
S
þ represents a

standard private goods production technology, we can interpret the club goods to be based

on a fixed infrastructure such as a network. The capacity of the network has to handle the

peak demands, which in turn determines the construction costs. A contemporary example

of such a situation is that of the provision of access to Internet through a so-called

bInternet Service ProviderQ (ISP). One can interpret an ISP as a club that provides access

to Internet services to their members. The cost function C̃ introduced here exactly

represents the cost structure for such an ISP. Capacity of the ISP’s server needs to be based

on peak demands for Internet access at the different time moments during a standard

period of time. These time moments can be represented by the discrete parameter t.

These examples feature an important commonality, namely, convexity. In the purely

public case in the sense of Schweizer, the induced cost function C is constant, which is

obviously convex. In the purely private and semipublic cases, C is induced by a private

goods cost function C̃. If C̃ is convex, as is standard in neoclassical production theory

(excluding increasing returns to scale in production), then so is C in either case, as the
5We may allow substitution of inputs by generalizing C to a correspondence.
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latter is the composition of C̃ and either summation (of private goods) or maximization (of

semipublic goods).

A club is now introduced as a tuple (nt, xt, yt)t=1,. . .,T, where n ¼ n1; N ; nT ÞaR
T
þ

�
is a

profile, x ¼ x1; N ; xT ÞaR
S T

�
a net private consumption plan, and y ¼ y1; N ; yT ÞaR

mT
þ

�
is

a club good consumption plan. A club (nt, xt, yt)t=1,. . .,T is feasible if

XT
t¼1

ntxt þ C n1y1; N ; nTyT
�
Q0:

�
ð1Þ

Net demands for the private goods and the costs for the provision of the club goods sum to

zero at most.6 For simplicity, there is no production of private goods. Its inclusion would

be a straightforward extension of the model.

A consumer of type t has an extended utility function Ut : R � R
mYR over his total

private and club good consumption. However, since his initial endowment wt is fixed, we

may simply write Ut(xt, yt). In principle, we allow an agent to have short positions in all

commodities.

Next, we introduce our main efficiency concept. Consider two feasible clubs given by

(nt, xt, yt)t=1,. . .,T and (n0
t, x0

t, y0
t)t=1,. . .,T. The club (nt, xt, yt)t=1,. . .,T is an improvement over

the club (n0
t, x0

t, y0
t)t=1,. . .,T if

Ut xt; ytÞNUt xt0; y
t
0

�
for every t with ntN0:

��
Following Schweizer (1983), if no such improvement exists for a club (n0

t, x0
t, y0

t)t=1,. . .,T,

then (n0
t, x0

t, y0
t)t=1,. . .,T is called club efficient.

A feasible club (n0
t, x0

t, y0
t)t=,. . .,T is a Lindahl equilibrium if there exist a private goods

price vector paR
S
þ and personalized admission price vectors p1; N ; pTaR

m
þ such that the

following conditions are satisfied:

(i) For every ta{1,. . ., T} with n0
tN0, the allocation satisfies the consumer utility

maximization condition

x t0; y
t
0

�
¼ argmax Ut xt; ytÞ subject to pxt þ ptytQ0:ð

�
(ii) The club (n0

t, x0
t, y0

t)t=,. . .,T satisfies a budget balance condition, i.e.,

XT
t¼1

nt0 p
tyt0 ¼ pC n10 y

1
0; N ; n

T
0 y

T
0

�
:

�
(iii) The club (n0

t, x0
t, y0

t)t=,. . .,T is optimal in the sense that, for every alternative club

(nt, xt, yt)t =1,. . .,T

XT
t¼1

nt pt ytQpC n1y1; N ; nTyT
�
:

�

6We remark that Schweizer (1983) introduces a given endowment for the club, denoted by FR0, that covers the

provision costs of the public goods and the net demands for private goods. In that case, in Eq. (1), the zero is

replaced by F. Here, we limit our discussion to the case without such an endowment.
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By the first condition, consumers maximize their utility given the market prices for

the private goods and the personal admission prices for the semipublic club goods. The

fees collected cover the costs of the provision of the club goods by the second

condition. The third condition stipulates that a public administration is in charge of the

provision of the club goods and admission prices and as such has the objective to

maximize its bprofitsQ (this maximal profit is zero by the second condition). This

condition is not included here because we consider the number of consumers to be

exogenous (see Foley, 1970 and other papers referenced in Section 1). However, since

our theorem will entail that club efficiency implies Lindahl pricing, the result is only

strengthened by the inclusion of the third condition in the definition of Lindahl

equilibrium.
3. A decentralization result

Relatively, little is assumed to arrive at complete decentralization of efficient clubs

through appropriate price systems. Following Foley (1970) and Schweizer (1983),

positivity of prices is ensured to render a complete decentralization through Lindahl

pricing.

Axiom.

(a) For every type t=1, . . ., T the utility function Ut is assumed to be continuous, quasi-

concave, and strongly monotonic.

(b) The club good production technology is convex in the sense that the cost function C:

R+
mTYR+

S is convex.

In the context of this assumption, we have the following result.

Theorem. Under the properties stated in the Axiom, every efficient club (n0
t, x0

t, y0
t)t=1,. . .,T

with a strictly positive endowment,
P

t =1 n0
twtJ0, can be supported as a Lindahl

equilibrium with strictly positive prices.

Proof. Let the club (n0
t, x0

t, y0
t)t=1,. . .,T be efficient.

We construct the following sets. First, for every taT, we define the preferred set,

Bt ¼ xt; 0; N ; 0; yt; 0; N ; 0ÞjUt xt; ytÞNUt xt0; y
t
0

�� �
oR

S � R
mT
þ :

���

In this definition, we let yt be at location 1+t.

Now for any profile naR
T
þ, we define the preferred set,

Bn ¼
XT
t¼1

ntBt ¼
XT
t¼1

ntxt; n1y1; N ; nTyT
 !				Utðxt; ytÞNUtðxt0; yt0Þ for all t

( )
:
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Finally, we let7

B ¼ [ BnjnaR
T
þ such that nN0

�
oR

S � R
mT
þ :

�
Second, we introduce the feasible set,

D ¼ ð � Cðn1y1; N ; nTyT Þ � z; n1y1; N ; nTyT Þ
				 nN0; zaR

S
þ;

y1; N ; yTaR
m
þ

�
:




We remark that also DoR
S þmT :

Bt is convex by quasi-concavity of Ut for every type t. It follows that Bn is convex for

each n. Because kBn+(1�k) Bn̂=Bkn+(1+k)n̂ for k a [0,1], it follows that the set B is

convex. Furthermore, from continuity ofU t for every type t, the set B is open inR S � R
mT
þ .

We show that D is convex. Let ( y1, . . ., yT, z, n) and (ŷ 1, . . ., ŷ T, ẑ , n̂ ) constitute (but

not be) members of D. Define m=(n1 y1, . . ., nT yT) and m̂=(n̂ 1 ŷ 1,. . ., n̂ T ŷ T). Then (�C

(m)�z, m) a D as well as (�C (m̂)-ẑ , m̂ )aD.

Now consider k a [0, 1]. We have to show that there exists a tuple (ỹ1,. . ., ỹT, z̃ , ñ)
such that (�C (m̃ )�z̃, m̃ )aD where m̃=(ñ1ỹ1,. . ., ñTỹT)r̃=km+(1�k)r̂ and C (m̃ )+z̃=E(C
(m)+z)+(1�k) (C (m̂)+ẑ ). This can be accomplished by selecting ỹt=kntyt+(1�k)n̂ t ŷ t for

every t, ñt=1, and

z̃z ¼ kC mð Þ þ 1� kð ÞC m̂ð Þ � C m̃mð Þ þ kzþ 1� kð Þ ẑ:

Now, m̃=km+(1�k) m̂ and by convexity of the cost function C, it follows that

z̃z ¼ kC mð Þ þ 1� kð ÞC m̂ð Þ � C m̃mð Þ þ kzþ 1� kð ÞẑRC km þ 1� kð Þm̂ð Þ
� C m̃mð Þ þ kzþ 1� kð Þẑ ¼ kzþ 1� kð Þẑ:

Hence, z̃R0 and thus indeed (�C (m̃ )�z̃, m̃ ) a D, finishing the proof that D is convex.

We define the cone generated by the feasible set D by

D
P ¼ kdjdaD and kR0f g:

By convexity of D, it follows that D
P

is a convex cone.

We claim that B and D
P

do not intersect. Suppose to the contrary that (nt, xt, yt)t =1,. . .,T
constitutes a member of B, (n̂ t, ŷ t)t=1,. . .,T, and ẑaR

S
þ constitute a member of D, and kR0

such that

XT
t¼1

ntxt; n1y1; N ; nTyT
!

¼ � kC n̂1ŷ1; N ; n̂TŷT
�
� k ẑ; kn̂1 ŷ1; N ; kn̂T ŷT

� �
:

� 

If kN0, it follows that n̂ntŷyt ¼ nt

k y
t and that

XT
t¼1

nt

k
xt ¼ � C

n1

k
y1; N ;

nT

k
yT
�
� ẑQ� C

n1

k
y1; N ;

nT

k
yT
�
:

��

This implies that the club (nt/k, xt, yt)t=1,. . .,T is feasible and improves upon the club (n0
t,

x0
t, y0

t)t=1,. . .,T. Since this contradicts the efficiency hypothesis, it follows that k=0 and the

only conceivable intersection point of B and D
P

is the origin. However, since B is open in
7See footnote 3 for the vector inequality notation.
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R
S � R

mT
þ , a perturbation of the origin to the left, with the first (S -dimensional)

component slightly negative, would still belong to B. By construction of D and D
P

, the

perturbation would also belong to D
P

, contradicting that the origin is the only conceivable

intersection point. Hence, the intersection is empty.

By the separating hyperplane theorem and the fact that D
P

is a cone, there exist p a R
S
þ

and p1; N ; pTaR
m
þ not all equal to zero such that

p; p1; N ; pT
�
BR0R p; p1; N ; pT

�P
D:

��
ð2Þ

By strong monotonicity of Ut, it can be concluded that B is comprehensive, and therefore,

( p, p1,. . ., pT)N0. It must value (�C (m), m)aD nonpositively: ( p1,. . ., pT)mQpC(r) for all
mR0. Since p=0 would imply ( p, p1,. . ., pT)=0, we must have pN0. Also, by assumption

that the aggregated total endowment is strictly positive, we may conclude that
P

n0
t pwtN0.

Thus, there is a type t with n0
t N0 and pwtN0. For this type t, an interior consumption plan

is feasible with respect to pxt+ptytQ0. Hence, by strong monotonicity and continuity of

Ut, using a standard argument, pJ0 as well as ptJ0. Hence, by nonzero endowment

assumption, pwtN 0 for all t. By the same argument, all ptJ0. We will now prove that

these prices constitute a Lindahl equilibrium.

First, we show the consumer’s utility maximization condition. Suppose that the tuple

given by (xt, 0,. . ., 0, yt, 0,. . ., 0) —with yt at location 1+t—satisfies Ut(xt, yt) NUt (x0
t, y0

t).

In fact, since pJ0, pwtN0, and the utility function is strongly monotonic and continuous,

the same holds for a pair of slightly smaller vectors. Now, from the separation property (2)

and the strict positivity of all prices, it is concluded that pxt+ptytN0.

It remains to show that (x0
t, y0

t) satisfies the budget condition px0
t+pty0

t= 0 if n0
t N0.

Indeed, from the feasibility condition for (n0
t, x0

t, y0
t)t=1,. . .,T, it follows that there is some

zaR
S
þ such that

XT
t¼1

nt0x
t
0; n

1
0 y

1
0; N ; n

T
0 y

T
0

!
¼ � C n10 y

1
0; N ; n

T
0 y

T
0

�
� z; n10 y

1
0; N ; n

T
0 y

T
0

� �
aD:

� 

From the separation property (2) it then follows that

XT
t¼1

nt0px
t
0 þ

XT
t¼1

nt0p
tyt0 ¼

XT
t¼1

nt0 pxt0 þ ptyt0
�
Q0:

�
ð3Þ

By strongmonotonicity, (x0
t, 0,. . ., 0, y0

t, 0,. . ., 0) belongs to the boundary of BtoB. From

Eq. (2), it immediately follows that px0
t+pty0

t=0. Hence, each term in Eq. (3) must be zero.

Since n0
t=0 for all types t, it now immediately can be concluded that px0

t+pty0
t=0 if n0

tN0.

Together with previously shown statement, this proves that (x0
t, y0

t) indeed solves the

consumer’s problem if n0
tN0.

Second, we consider the financial balance condition. Since, as shown above, each term

in Eq. (3) must be zero, it follows immediately that

XT
t¼1

nt0 p
tyt0 ¼ �

XT
t¼1

nt0 px
t
0 ¼ pC n10; y

1
0; N ; n

T
0 y

T
0

�
;

�
ð4Þ

where the last equality reflects the fact that the feasibility constraint is binding, using

strong monotonicity.
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Finally, we consider the problem of the public administration. Since the prices value D

nonpositively, we have that

XT
t¼1

ntptyt � p C n1y1; N ; nTyT
�
Q0:

�
This proves that ( y0

1,. . ., y0
T, n0) indeed solves the public administration’s problem. This

completes the proof of the theorem. 5

The converse of the theorem also holds. The proof is an easy adaptation of Schweizer’s

(1983) proof of his second theorem. Thus, we have a true equivalence result.

The implementation of more general club good cost functions is probably very hard, if

not impossible. In the next example, we consider a cost function that is more general but

fails to lead to equivalence of the set of efficient clubs and the set of Lindahl equilibria.

Semipublic goods, as we defined them, have a distinct structure in that only total

consumption by type ȳ¼ n1y1; N ; nTyT ÞaR
mT
þ

�
affects their provision. In general, a club

with profile n and club goods demands y may impose resource requirements in a way that

is not separable by type.

Counterexample. Consider an economy setting with one private and one club good, i.e.,

S =m=1, and two types of consumers, i.e., T=2, with the following utility functions:

U 1 x; yð Þ ¼ min 2xþ 4; yð Þ;

U 2 x; yð Þ ¼ min 2xþ 3; 2yð Þ:

Now consider a production structure for the club good that does not satisfy the

functional form considered in our model. The cost function is given by

Cðn1; n2; y1; y2Þ ¼ max nt
ta 1;2f g

max yt

ta 1;2f g
:

This cost function can be interpreted as representing a semipublic good of which the

provision is based on the maximal consumption capacity requested, where the maximal

capacity is max nt. This cost function is convex, but here, costs are not a function of the

total consumption of club goods by type, n1y1,. . .,nTyT. The trade-off within types

between members and mean consumption does not hold. Total consumption of the club

goods by type is shown to be an insufficient statistic for core equivalence.

Consider the club given by n0=(1, 1), x0
1=x0

2=�1, and y0
1=y0

2=2. This club is efficient,

as we demonstrate first.

We show that U2 cannot be lifted over its club level, 1, whenever n2N0, U1R2, and

feasibility is fulfilled. Invoking linear homogeneity with respect to n, feasibility now

requires

n1x1 þ x2 þmax n1; 1
�
d max y1; y2

�
Q0:

��
Hence,

x2Q� n1x1 �max n1; 1
�
d y1:

�
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Substituting x1R�1 and y1R2 (both from U1R2) obtains

x2Qn1 � 2max n1; 1
�
Q� 1:

�

Hence, U2(x2, y2)Q1, proving club efficiency.

This utility level is obtained only if n1=1 and the feasibility constraint is binding:

x10 þ x20 þmaxðy10; y20Þ ¼ 0:

Now, suppose that there is a Lindahl price p. Substituting the Lindahl break-even

constraint for the semipublic goods, the sum of the consumers’ budgets is zero. Since each

of these budgets is nonpositive, they are all zero. Better clubs must be priced higher, hence

positively. But this is not so. Indeed, consider any club with n arbitrary and (x1, y1)=(1/2,

1). Now (x2, y2)=(�1/2, 1), and therefore, a consumer of type 2 prefers this club to the

original one. This consumption bundle is half of the club-efficient bundle, (x0
2, y0

2)=(�1,

2), which has zero value. This implies that it is affordable. This in turn implies that the

efficient club cannot be supported as a Lindahl equilibrium.
4. Discussion

Our theorem provides price support to club allocations that cannot be improved upon.

These prices are linear, unlike Mas-Colell’s (1980) personalized price schedules—

extended to economies with multiple private goods by Diamantaras and Gilles (1996) and

to club economies by Gilles and Scotchmer (1997)—or the admission fees or bwagesQ
used by Barham and Wooders (1998). The theorem and its proof are adaptations of

Schweizer’s (1983) theorem on club efficient allocations. He obtains the Henry George

Theorem for economies with fixed public goods and associated inputs and, if the latter are

zero, the welfare and core limit theorems. In the present paper, club goods are not

exogenous but endogenous, namely, the outcome of competition among utility max-

imizers. Moreover, in principle, these club goods are not purely public but semipublic.

It is well known that there is no competitive basis for Lindahl equilibria in pure

public goods economies (Milleron, 1972; Bewley, 1981). Wooders (1978) has

conjectured that the core shrinks when there is crowding, but Conley and Wooders

(1997) show that the second welfare theorem is generally false. Barham and Wooders

(1998) provide useful relationships between optima and competitive equilibria, but all

these papers concern economies with only one private and one public good. In these

papers, the private good required to provide n members with y units of the public good

is given by C(n, y) and utility features a congestion argument represented by U(x, y,

n). Now, the reduced form is given by U(x�C(n, y)/n, y, n). Wooders (1978, p. 336)

assumes that the best value with respect to y is maximized further for two consecutive

integer values of n. In other words, the expression (maximized with respect to y) is

assumed locally constant in n. This constitutes a knife-edge, joint assumption on C and
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U. Now, in this paper, we have essentially absorbed the (utility) congestion argument in

the costs. Denoting the resulting cost and utility functions by C̃ and Ũ, respectively, the

relation becomes Ũ(x�C̃(n, y)/n, y, n)=Ũ(x�C̃(n, y)/n, y). By the envelop theorem, the

maximum with respect to y is locally constant with respect to n if C̃(n, y)/n) is locally

constant with respect to n. This implies C̃(n, y)=nd c( y). Our modelling hypothesis,

however, is C̃(n, y)=C(ny). Wooders’ and our approaches are consistent if the per

capita cost function c (which includes the congestion costs) features constant returns to

scale.

For economies with multiple private and public goods, Conley (1994) conjectures that

the core of a public goods economy converges only in the knife-edge case in which the

increasing returns to coalitional size are precisely offset by crowding, diminishing

marginal returns in production, or something similar. In a sense, we have articulated this

intuition. For example, if the public goods function is C(ny)=F+(ny)2 (everything scalar),

then club efficiency brings about the efficient scale of production, n0y0 ¼
ffiffiffiffi
F

p
, an

argument that extends to more general production possibilities.

An alternative model of an economy with multiple public goods such that the Lin-dahl

equilibrium emerges, has been undertaken by Vasil’ev et al. (1995). That paper uses an

alternative core concept based on utility levels of members of blocking coalitions

depending on the replica size and the coalition structure. The comparison is as with

Wooders et al., without the congestion argument in the costs and with nT-dimensional (the

number of types). For one type, the reduced form reads U(x�C( y)/n, y, n), and we may

absorb the (third) congestion argument in the costs. Although our approach to club goods

may seem different, the two approaches are closely related, in the sense that the

opportunity cost of individual public—or club—goods consumption is not reduced with

the size of the economy in either model. From this perspective, the contribution of our

paper is a demonstration that Schweizer’s theorem encompasses the core limit theorem of

Vasil’ev et al. (1995).

The just mentioned replication literature has attempted to provide a competitive basis

for Lindahl equilibria by modelling congestion on the demand side, while we have put

congestion on the supply side. In a way, this is a return to the intuition of Ellickson

(1973, p. 417): what matters is the convexity of the aggregate technology set. When the

number of consumers varies freely, the convexity ensures that any core allocation is a

Lindahl equilibrium, provided that cost is a function of the product of the subpopulation

of each type and the club bundle they consume. Then, Lindahl prices also represent the

marginal effect of adding another person of a given type to the club. This explains when

and why Lindahl equilibria have a competitive basis in economies with semipublic

goods.
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