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The Construction of Input–Output Coefficients
Matrices in an Axiomatic Context: Some Further
Considerations

THIJS TEN RAA & JOSÉ MANUEL RUEDA-CANTUCHE

(Received August 2002; revised March 2003)

A Kop Jansen & ten Raa (1990) established a purely theoretical solution to
the problem of selecting a model for the construction of coefficients on the basis of make
and use tables. In an axiomatic context, they singled out the so-called commodity
technology model as the best one according to some desirable properties. The aim of this
paper is to delineate the restrictions on the relevant data sets that ensure fulfilment of the
desirable properties by other models used by statistical offices.

K: Make and use tables; technical coefficients

1. Introduction

An input–output matrix of technical coefficients, Aó(aij) with i, jó1, . . . , n (where
n is the number of commodities), represents the direct requirements of commodity
i needed to produce a physical unit of commodity j. For instance, if industry 1
corresponds to agriculture and industry 2 corresponds to chemicals, then a21 will
be the amount of chemical products consumed by agriculture per physical unit of
peach, apple and so on. In more general terms, the standard reference is Leontief
(1986).

The matrix of technical coefficients A has been used for economic analysis by
means of the so-called quantity equation or material balance (supply and demand)
and the value equation or financial balance (costs and revenues),
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whom correspondence should be sent), Universidad Pablo de Olavide, Departamento de Economı́a y
Empresa, Carretera de Utrera km. 1, 41013 Sevilla, Spain. E-mail: jmruecan@dee.upo.es. The authors
thank F. M. Guerrero, E. Fedriani, E. Romero and two anonymous referees for valuable comments.

ISSN 0953-5314 print; 1469-5758 online/03/040439-17 DOI: 10.1080/0953531032000152317
©2003 The International Input–Output Association

D
ow

nl
oa

de
d 

by
 [

In
te

rn
at

io
na

l I
np

ut
 O

ut
pu

t A
ss

oc
ia

tio
n 

] 
at

 1
4:

33
 1

7 
A

ug
us

t 2
01

1 



440 T. ten Raa & J. M. Rueda-Cantuche

Here, x is a column vector of gross outputs, y is another column vector of final
demand, p is a row vector of prices, and lastly, v is a row vector of value-added
coefficients.

The quantity equation is used for national or regional economic planning; for
instance, the output requirements to satisfy a certain final demand level could be
analysed. Final demand could be influenced by an exports or investments policy.
Thus, there will be a direct effect over the output levels, which will depend on the
final demand variations (*y) and additional indirect effects that will be determined
by the A-matrix, in accordance with the material balance equation. The value
equation can be used to assess the price effects resulting from an energy shock,
which surely will bring about variations in the value-added shares of a product, to
mention an example.

National and Regional Statistical Offices have concentrated almost exclusively
on industry input–output tables instead of commodity tables and set up so-called
transactions tables Tó(tij ), with i, jó1, . . . , nò1, where n is the number of sectors
or industries (ten Raa, 1994). In such a table, each element displays the input
requirements of sector i per unit of sector j’s production, as well as the final
demand compartments (household and government consumption, investment and
net exports).

Ten Raa (1994) noted that an input–output transactions table T reduces the
construction of a matrix of technical coefficients A to a matter of divisions:

aijó
tij

;
nò1

só1
tjs

However, there are three problems. First, commodities and sectors cannot always
be classified in the same way. Second, in addition to a multitude of inputs, sectors
may also have a multitude of outputs. In other words, secondary products must be
accommodated. Third, commodities contained in each row and column of an
industry-by-industry table are not homogeneous in terms of production (see Rainer,
1989; Braibant, 2002).

To address these complications, the System of National Accounts proposed by
the United Nations (1968, 1993), first established the concepts of use and make
matrices within an input–output framework.1 Demand and supply of commodities
are described by industries. Thus, let us define a use table, Uó(uij ) of commodities
i consumed by sector j (with i, jó1, . . . , n), and a make table Vó(vij ) where sector
i will produce commodity j (United Nations, 1968; ten Raa et al., 1984; Kop
Jansen & ten Raa, 1990). Notice that, although several attempts have been made
to deal with rectangular use and make matrices (see Konijn, 1994), the numbers
of commodities and of industries are presumed equal. Following Kop Jansen & ten
Raa (1990) industry tables and mixed tables are not considered either.

This new framework provided a more accurate description of commodity flows
and, at the same time, made economists face the new problem of constructing
technical coefficients matrices, according to some mathematical method based on
use and make matrices, and which did not always make sense economically (Viet,
1994).

Basically, the construction of a technical coefficients matrix A is a matter of
treatment of secondary products. Many establishments produce only one group of
commodities, which are the primary products of the industry to which they are
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Construction of Input–Output Coefficients Matrices 441

Table 1. General input–output accounting framework

Commodities Industries Final demand Total

Commodities U Y qóeTV
Industries V góVe
Primary inputs WT

Total VTe eTVT

classified. However, some establishments produce commodities that are not among
the primary products of the industry to which they belong. As a result, non-
zero off-diagonal elements appear in the make matrix. Alternative treatments of
secondary products rest upon the separation of outputs and inputs associated with
secondary products so that they can be added to the outputs and inputs of the
industry in which the secondary product is a characteristic output. Assumptions
on these input structures imply an A-matrix of technical coefficients as a function
of the use and make matrices.

In what follows, e will denote a column vector with all entries equal to one, T

will denote transposition and ñ1 an inversion of a matrix. Since the latter two
operations commute, their composition may be denoted ñT. In addition, ˆ will
denote diagonalization, whether by suppression of the off-diagonal elements of a
square matrix or by placement of the elements of a vector. ˜ will denote a matrix
with all the diagonal elements set to null. Table 1 shows the general input–output
accounting framework from the SNA (see United Nations, 1968, 1973; Gigantes,
1970; Armstrong, 1975).

Section 2 reviews the literature on the different methods for the treatment of
secondary products. In Section 3, we show the theoretical solution given by Kop
Jansen & ten Raa (1990) in order to select the best method for constructing a
technical coefficients matrix A ó(aij ) (of commodities i needed for the production
of one physical unit of commodity j). Further considerations will be taken into
account with respect to hybrid models. The aim of this paper is to analyse how
bad or good are alternative methods of constructing technical coefficients’ A-
matrices in the presence of data restrictions; this is done in Section 4. Lastly,
Section 5 draws some conclusions.

2. Description of the Models

Table 2 describes the literature on the treatment of secondary products. The
methods can be divided into two groups: those which transfer outputs only and
those which transfer both inputs and outputs.

2.1. Methods based on the Transfer of Outputs Only

Methods based on the transfer of outputs only are not based on economic
assumptions, but are mainly statistical devices to remove secondary products from
the make table. Viet (1994) suggests that the Stone and ESA methods should be
used only for by-products.2

2.1.1. Transfer Method The transfer method treats a secondary product as if it is
sold by the industry to which it is a primary product to the industry that actually
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442 T. ten Raa & J. M. Rueda-Cantuche

Table 2. Treatment of secondary products

Review of approaches to the treatment of secondary products

1. Transfer of outputs alone:
(a) Transfer method (Stone, 1961, pp. 39–41; United Nations, 1973, p. 25; Fukui & Seneta, 1985,

p. 178; Viet, 1986, pp. 16–18; Kop Jansen & ten Raa, 1990, p. 215; or Viet, 1994, pp. 36–38).
(b) Stone method or by-product technology model (Stone, 1961, pp. 39–41; United Nations, 1973,

p. 26; ten Raa et al., 1984, p. 88; Fukui & Seneta, 1985, p. 178; Viet, 1986, pp. 15–16; Kop
Jansen & ten Raa, 1990, p. 215; or Viet, 1994, p. 38).

(c) European System of Integrated Economic Accounts (ESA) method (EUROSTAT, 1979; Viet, 1986,
pp. 18–19; Kop Jansen & ten Raa, 1990, p. 214; or Viet, 1994, pp. 38–40).

2. Transfer of inputs and outputs:
2.1 Lump-sum or aggregation method (Office of Statistical Standards, 1974, p. 116; Fukui & Seneta,

1985, p. 177; Kop Jansen & ten Raa, 1990, p. 214; or Viet, 1994, pp. 42–43).
2.2 One technology assumption methods

(a) Commodity technology model (United Nations, 1968, 1973 pp. 26–32; van Rijckeghem, 1967;
Gigantes, 1970, pp. 280–284; Armstrong, 1975, pp. 71–72; ten Raa et al., 1984, p. 88;
Viet, 1986, p. 20; Kop Jansen & ten Raa, 1990, p. 215; or Viet, 1994, p. 41).

(b) Industry technology model (United Nations, 1968, 1973 pp. 26–32; Gigantes, 1970, pp. 272–
280; Armstrong, 1975, pp. 71–72; ten Raa et al., 1984, pp. 88–89; Fukui & Seneta, 1985,
p. 178; Viet, 1986, p. 21; Kop Jansen & ten Raa, 1990, p. 215; or Viet, 1994, pp. 40–41).

(c) Activity technology model (Konijn, 1994; Konijn & Steenge, 1995).
2.3 Hybrid technology assumptions methods

(a) Mixed commodity and industry technology assumptions (United Nations, 1968, 1973, pp. 33–34;
Gigantes, 1970, pp. 284–290; Armstrong, 1975, pp. 72–76).

(b) Ten Raa et al., 1984 (Commodity technology assumption and by-product technology
method).

produces it. Mathematically, the technical coefficients matrix A is derived by the
following formula, where góVe and qóeTV (see Table 1):

AT(U, V )ó(UòṼ)(ĝòq̂ñV̂)ñ1

The input structure of the industry to which the secondary products are primary
outputs, is distorted by the inclusion of the transfer. As a result, an increase in the
final demand of those secondary products would lead to an increase in the demand
for the primary outputs of the industry that actually produces them, which need
not be true. In addition, the input structures of industries that produce secondary
products can be altered if the proportion in which they are produced changes.
Lastly, sector outputs can either be industry or commodity outputs.

2.1.2. Stone Method (or By-product Method) By the Stone method, all secondary
products are considered by-products. Therefore, they can be treated as a negative
input in the industry where it is actually produced. Mathematically, we can obtain
the technical coefficients matrix A by the following formula:

aB
ij (U, V )ó�

ujj

vjj

if ió j

uijñvji

vjj

if iÖ j
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Construction of Input–Output Coefficients Matrices 443

or, in matrix notation,

AB(U, V )ó(UñṼT)V̂ñ1

Negative values of technical coefficients are obtained as a result of applying the
Stone method. They appear when the actual use of a commodity i by an industry
j is smaller than its secondary output of commodity i. Industry j would need a net
amount uijñvji of commodity i, which is actually a secondary product of industry
j, for the production of vjj units of its primary output. Note that, necessarily, iÖ j.
Besides, the input structure of the industry that produces the secondary product
is distorted according to this method for the treatment of secondary outputs.

2.1.3. ESA Method The European System of Integrated Economic Accounts
(ESA) published in 1979 recommends that secondary products should be treated
as if they were produced by the industry for which these secondary outputs are
primary products. Mathematically, the technical coefficients matrix A is calculated
as follows:

aE
ij (U, V )ó uij

;
n

jó1
vji

i, jó1, 2, . . . , n

or, in matrix notation,

AE(U, V )óUq̂ñ1

The technical coefficients are constructed by division of all the entries of the
use table by the total output of the commodity corresponding to the column in the
make table. This total output is not necessarily produced by a single sector.

The shortcoming of this treatment is the distortion of input structures of
industries with no secondary products but with primary products, which are
also produced by other industries. Input structures of industries with secondary
production are distorted similarly. Moreover, the sum of intermediate uses of an
industry j can be larger than the total output of commodity j due to the subtraction
of their secondary outputs. This will lead to sums of input coefficients greater than
one and, therefore, to the non-existence of the Leontief inverse or the negativity of
some of its cells.

2.2. Methods based on the Transfer of Inputs and Outputs

Other methods transfer secondary products and their inputs to the outputs and
inputs of the industries where the secondary products constitute a primary output.
Since data on inputs associated with secondary products are rarely available,
assumptions are made, such as the commodity technology hypothesis, by which
the input structure of a secondary commodity is independent of the sector of
production, or the industry technology hypothesis, by which the input structure of
a secondary output is the same as that of the industry to which it is a primary
output. In other terms, production processes substitute commodities when the
activity technology model is applied (Konijn, 1994). In fact, this model borrows
the mathematical structure of the commodity technology model. In addition, we
will present hybrid methods based on mixed technology assumptions.
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444 T. ten Raa & J. M. Rueda-Cantuche

2.2.1. Lump-sum or Aggregation Method This method treats a secondary product
as if it were actually produced as a primary output. Mathematically, the matrix of
technical coefficients A is given by:

aL
ij (U, V )ó uij

;
n

ió1
vji

i, jó1, 2, . . . , n

or, in matrix notation,

AL(U, V )óUĝñ1

Technical coefficients are obtained by dividing all the entries of each of the columns
from the use table by the total output of industry j, specified in row j of the make
table. This total output includes not only primary products, but also secondary
products and by-products.

2.2.2. Methods with a Single Technology Assumption Three methods rely on a single
technology assumption, namely the commodity, industry and activity technology
models.

The commodity technology model assumes that each commodity has its own
input structure, irrespective the industry of production.3 Hence, if aik represents
the direct requirements of commodity i needed by industry j for the production of
one physical unit of commodity k and also vjk stands for the total secondary output
of commodity k produced by industry j, it can be derived that the amount aikvjk is
the total inputs requirements of commodity i needed for the production of vjk units
of output k. Then, if we also assume that industry j has multiple outputs and they
are all different from commodity k, we could finally sum over outputs to obtain
industry j ’s total demand for input i. Thus, uij can be written as:

uijó;
n

kó1
aikvjk i, jó1, . . . , n

If industry j produces vjk outputs of commodity k, aik inputs of commodity i per
physical unit of output k will be required. Furthermore, in case another industry t
produces vtk outputs of commodity k, the direct requirements of input i per physical
unit of output k result again aik. In matrix terms, the commodity technology
assumption is given by:

UóAC(U, V)VT

and therefore,

AC(U, V)óU VñT

This method requires the same number of commodities as of industries due to
the inverse of the make table. However, its main shortcoming is the negativity of
some technical coefficients. According to Viet (1994), negative elements arise when
the input structure of the secondary output is not the same as that of the primary
product produced elsewhere, and the input, which is transferred out, is greater
than the input that is actually consumed. Negative values in the A-matrix have
prompted a huge literature on the possible solutions to overcome this shortcoming
(Almon, 1970; Armstrong, 1975; ten Raa et al., 1984; ten Raa, 1988; ten Raa &
van der Ploeg, 1989; Rainer, 1989; Steenge, 1990; Rainer & Richter, 1992; Mattey,
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Construction of Input–Output Coefficients Matrices 445

1993; Konijn, 1994; Konijn & Steenge, 1995; Mattey & ten Raa, 1997; Avonds &
Gilot, 2002).

By the industry technology assumption, each industry has the same inputs
requirements for any unit of output (this time, measured in values). This implies
that every commodity has different technologies depending on what industry
produces it. Actually, the industry technology model assumes that:

(1) Input structures of industries are proportional to their outputs (as the
commodity technology model assumes).

(2) Market shares of industries are fixed and independent of the level of
commodity or industry outputs.

Mathematically, the A-matrix of technical coefficients is given by:

aI
ij(U, V )ó;

n

kó1�uik

vk��
vkj

v@j �
where vk is the total output of industry k and v@j is the total output of commodity
j. In matrix notation,

AI(U, V )óUĝñ1Vq̂ñ1

Let us examine in more detail the above expression in order to cast light on the
economic foundations of the industry technology model. uik /vk represents the direct
requirements of commodity i needed for the production of one physical unit of
commodity k. On the contrary, vkj /v@j denotes the proportion of the commodity j
output produced by industry k to the total output of such a commodity. In short,
the result is called market share. Hence, according to this model, technical
coefficients result from a (market share) weighted average over industries k.

Although this assumption has been widely used in many countries, its popularity
stemming from the non-negativity of the resulting technical coefficients matrix as
well as the fact that the number of commodities need not be equal to the number
of industries, is economically unacceptable. As Viet (1994) pointed out, the
resulting A-matrix is obtained assuming that costs associated with either primary
or secondary products are the same, while prices of these products are obviously
different. Since the financial balance in input–output analysis states that for each
commodity unit, revenue equals material cost plus value added, applying the
industry technology model implies that this meaningful input–output economics
assumption does not hold. Moreover, a change in the base year prices and also
proportional variations in input requirements and outputs alone will affect the
internal structure of technical coefficients.

With respect to the activity technology model, Konijn (1994) redefines the use
and make matrices in such a way that application of the commodity technology
formula prompts no negatives. Instead of the commodity unit, Konijn assumes
that industries can produce commodities according to several production processes
and that the same production process can be used by other industries. Moreover,
one commodity can be produced by several production processes, while one
production process can generate different goods. Unfortunately, the resulting
activity-by-activity input–output table does not remove the negatives. Konijn (1994)
and Konijn & Steenge (1995) argue that the remaining negatives indicate that
some classification adjustments must be made or some further research on error
data must be developed. Although the need for further information on the use

D
ow

nl
oa

de
d 

by
 [

In
te

rn
at

io
na

l I
np

ut
 O

ut
pu

t A
ss

oc
ia

tio
n 

] 
at

 1
4:

33
 1

7 
A

ug
us

t 2
01

1 



446 T. ten Raa & J. M. Rueda-Cantuche

and make system is required to apply this activity technology model, Statistics
Netherlands adopts this way of removing negatives. In conclusion, Konijn (1994)
proposes that we explicitly look at production processes instead of commodities
and that we consider the commodity classification of use and make matrices an
instrument instead of an exogenous scheme.

2.2.3. Mixed Technology Assumptions Methods Following Armstrong (1975), hybrid
technology methods assume that subsidiary production fits either the commodity
technology or the industry technology assumptions. That is, one would expect that
most commodities have the same input structure wherever they are produced, but
when secondary products are obtained as a result of industrial processes (i.e. by-
products), the assumption of an industry technology assumption may be more
appropriate. Hybrid methods require that the make matrix is split into two matrices,
V1 and V2, where the first one includes outputs for which the commodity technology
assumption is made and the second includes those which are to be treated on an
industry technology assumption.

The hybrid technology methods suggested by Gigantes (1970), and incorpo-
rated in the United Nations System of National Accounts (United Nations, 1968),
are based on the following assumptions over the use and make matrices.

Firstly, industries’ outputs of commodities for which a commodity technology
assumption is made, are proportional to the output of each industry. This is
implicitly assumed when the commodity technology model is applied. It is
denoted as:

VT
1óC1ĝ1 (1)

where g1óV1e.
Secondly, industries’ outputs of commodities for which an industry technology

assumption is made, are proportional to these commodity outputs. The proportions
are the market shares of each industry’s products in the total output of each one
of these kinds of commodities. This is implicitly assumed when the industry
technology model is applied:

V2óD*2 q̂2 (2)

where q2óVT
2 e.

Thirdly, the production of commodities for which an industry technology
assumption is made follows fixed market shares. That is, industries’ commodity
outputs for which an industry technology assumption is made are proportional to
the total commodity outputs produced in the economy. It is denoted as:

g2óD2q (3)

where g2óV2e.
Following Armstrong (1975), after some transformations the resulting matrix

of technical coefficients is given by:

AH(U, V)óUĝñ1(ĝ1VñT
1 (Iñq̂ñ1q̂2)òV2q̂ñ1)

It can be seen that if V2ó0 then VóV1, g1óg and q2ó0; hence, the solution is
given by:

AH(U, V)óUVñTóAC(U, V)
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Construction of Input–Output Coefficients Matrices 447

which is the commodity technology model. Analogously, if V1ó0 then VóV2,
q2óq and q1ó0; hence the solution is given by:

AH(U, V)óUĝñ1Vq̂ñ1óAI(U, V)

which is the industry technology model.
The hybrid technology model generates negative values of technical coefficients,

just like the commodity technology model. A different solution can be obtained if
we assume that the outputs of the products for which an industry technology
assumption is made are proportional to the outputs of the producing industries
instead of to the outputs of each commodity, whatever industry produced them. A
more detailed explanation is shown in Armstrong (1975, pp. 74–76). The resulting
A-matrix is given by:

AY(U, V)óUĝñ1(ĝ1VñT
1 (IñVT

2 ĝñ1H)òV2q̂ñ1)

with H such that góHq.
Ten Raa et al. (1984) elaborated a new hybrid technology model where the

industry technology assumption was replaced by the Stone (or by-product) method.
In this case, the make table is split into two matrices, V1 and V2. V1 includes those
outputs for which a commodity technology assumption is made (primary and
ordinary secondary outputs) and V2 includes those that are to be treated on by-
product technology assumption (by-products). Since by-products are treated as
negative inputs, the total requirements of commodity i by industry j for the
production of all primary and ordinary secondary products of industry j are given
by a net amount of requirements. Mathematically,

ACB(U, V)ó(UñVT
2 )VñT

1

Notice that if all secondary products are ordinary (V1óV), we will have the
commodity technology model and that if all secondary products are by-products
(V1óV̂, V2óṼ), we will have the Stone method (or by-product technology model).
As discussed in ten Raa et al. (1984), negative elements in the technical coefficients
matrix also arise when this hybrid model is applied.

3. The Choice of Model

Kop Jansen & ten Raa (1990) developed and examined axiomatically how well
various methods for treatment of secondary products fulfil four desirable properties
of input–output coefficients A(U, V), namely:

(1) Axiom M refers to the material balance or the quantity equation and is
denoted by

A(U, V)V TeóUe

Economically, this axiom implies that total supply must meet total demand
(intermediate consumption plus final demand compartments). In other
words, the total input requirements must be equal to the observed total
input.

(2) Axiom F refers to the financial balance or the value equation and is denoted
by

eTA(U, V)V TóeTU
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448 T. ten Raa & J. M. Rueda-Cantuche

That is to say, for each commodity unit, revenue equals material cost plus
value added. In words, the input cost of output must match the observed
value of input.

(3) Axiom P refers to the invariance of the resulting A-matrix with respect to
units of measurement or, in other terms, to prices. It is called the price
invariance axiom and is denoted by

A(p̂U, Vp̂)óp̂A(U, V)p̂ñ1 �p[0

Evidently, this property tries to avoid that a change in the base year prices
could affect technical coefficients. Variations in the internal structure of
A(U, V) should be caused by real economic phenomena.

(4) Axiom S is the so-called scale invariance axiom:

A(Uŝ, ŝV)óA(U, V) �s[0

It stipulates that technical coefficients do not change when input require-
ments and outputs vary proportionally.

Kop Jansen & ten Raa (1990) proved that the just described structure of input–
output analysis, involving the four axioms, not only imposes restrictions on the
choice of model of construction, but determines it uniquely, namely the commodity
technology model. Their theorem in the real sphere states that the combination of
axioms M and S implies that the commodity technology model specifies the A-
matrix, and their theorem in the nominal sphere that the combination of axioms F
and P has the same implication.

Table 3 illustrates how the other methods fare in the light of the axioms. In
addition to the results obtained by Kop Jansen & ten Raa (1990), Table 3 includes
the performance of the mixed commodity and industry technology models (United
Nations, 1968; Gigantes, 1970); the proofs are in the Appendix. Lastly, since the
activity technology model (Konijn, 1994) borrows the mathematical structure from
the commodity technology model, it requires no separate performance report.

Our main result is a closer examination of Table 3, answering the question of
what restrictions on the data restore the desirable properties for the models. In
other words, for each input–output construct we delineate regions in data space
where axioms are fulfilled.

4. Equivalent Conditions for Axioms M and F

In this section, we will prove that under certain data limitations, some methods for
the treatment of secondary products other than the commodity technology model

Table 3. Axioms fulfilment of input–output coefficients constructs

Model Axiom M Axiom F Axiom P Axiom S

Transfer
Stone method � �
ESA method � �
Lump-sum �
Commodity technology � � � �
Industry technology �
ten Raa et al. Method � �
United Nations hybrid model �

Source: Kop Jansen & ten Raa (1990) and own elaboration.
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Construction of Input–Output Coefficients Matrices 449

fulfil the material and financial balance. Unfortunately, the price and scale invari-
ance axioms admit no such results.

Two theorems express the material and financial balance axioms in terms of
the commodity technology model.

Theorem 1
A technical coefficients matrix A(U, V) fulfils axiom M for all U and non-singular
V if and only if,

;
n

jó1
aijqjó;

n

jó1
aC

ij qj �ió1, . . . , n

or, in matrix terms,

A(U, V)VTeóAC(U,V )VTe

Proof
By definition of AC, the right-hand side of axiom M reads

UeóUVñTVTeóAC (U,V)VTe

This completes the proof.

Theorem 2
A technical coefficients matrix A(U, V) fulfils axiom F if and only if the sum of
each column of A(U, V) matches the sum of the respective column of AC (U,V) for
all U and non-singular V.

;
n

ió1
aijó;

n

ió1
aC

ij �jó1, . . . , n

or, in matrix terms,

eTA(U, V)óeTAC (U, V)

Proof
Sufficiency is proved as follows. Suppose

eTA(U, V)óeTAC(U, V)

then, by definition of AC,

eTA(U, V)óeTUVñT

and therefore,

eTA(U, V) VTóeTUV ñTVT

or

eTA(U, V) V TóeTU
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450 T. ten Raa & J. M. Rueda-Cantuche

which is axiom F indeed. All steps can be reversed, proving necessity. This
completes the proof.

For the lump-sum (or aggregation) method we have the following result.

Corollary 1
The lump-sum method fulfils the material balance axiom if the total output of
industry j matches the total output of commodity j, for all U and V with q jóg j, �j.

Proof
Under the lump-sum method the A-matrix is defined as:

AL(U, V)óUĝñ1

and, therefore, if we assume that VeóVTe, that is all gjóq j, we obtain:

AL(U, V)qóUĝñ1qóUq̂ñ1qóUq̂ñ1q̂eóUe

since qóq̂e.
This completes the proof.

We conclude that the material balance axiom will be fulfilled in the lump-sum
model if, for all j, total industry output is equal to total commodity output. The
reverse does not hold; axiom M does not imply that gjóq j.

The Stone (or by-product) technology model also admits a specific result.

Corollary 2
The Stone (or by-product) technology model fulfils the financial balance axiom for
all U and V if and only if value-added is zero.

eTV TóeTU

Proof
Under the financial balance axiom, the by-product technology model should verify,

eTAB(U, V) V TóeTU

with the left-hand side of this equality such as,

eT(UñṼT)V̂ñ1VTó(eTUñeTṼT)V̂ñ1VTóeTUV̂ñ1VTñeTṼTV̂ñ1VT

Moreover, since ṼTóVTñV̂T and V̂TóV̂ it yields,

eTUV̂ñ1VTñeTṼTV̂ñ1VTóeTUV̂ñ1VTñeTVTV̂ñ1VTòeTV̂TV̂ñ1VT

which is the same as,

eTAB(U, V )VTó(eTUñeTVT)V̂ñ1VTòeTVT

So, let us assume now that eTVTóeTU, then

eTAB(U, V )VTóeTVTóeTU

All steps can be reversed, proving necessity.

This completes the proof.
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Construction of Input–Output Coefficients Matrices 451

The last model we consider is the mixed technology model presented by ten
Raa et al. (1984), where the make matrix is split into a table V1 of primary products
and ordinary secondary products, i.e. those products that involve an alternative
activity and which are not being generated automatically by the primary productive
process, and a table V2 of by-products.

Kop Jansen & ten Raa (1990) demonstrate that both axioms M and F hold if
and only if the mixed technology model proposed by ten Raa et al. (1984) reduces
to the commodity technology model. In other words, both axioms hold only when
the V2 table is null, i.e. when there are no by-products, since according to the
authors, the so-called ordinary secondary products are included in table V1.

But what happens in the presence of by-products? Under what restrictions on
the data will axioms M and F still hold? We will take some preliminary results from
Kop Jansen & ten Raa (1990) as our point of departure in order to cast light on
this issue.

Corollary 3
The CB-Mixed (ten Raa et al., 1984) technology model fulfils the material balance
axiom for all U and non-singular V1 when UóVT.

Proof
Under the CB-Mixed technology model construct, the material balance axiom
should verify that,

ACB(U, V)VTeó(UñVT
2 )VñT

1 VTeóUe

where V1 stands for the primary outputs and those secondary products considered
as ‘ordinary’ according to ten Raa et al.’s (1984) definition, and V2, for the by-
products. Since we are assuming that UóVTóVT

1òVT
2 it can be shown that,

(UñVT
2 )VñT

1 VTeóVT
1 VñT

1 VTeóUe

This completes the proof.

Corollary 4
The CB-Mixed (ten Raa et al., 1984) technology model fulfils the financial balance
axiom if and only if value-added is zero.

eTV TóeTU

Proof
As Kop Jansen & ten Raa (1990) demonstrate, under the CB-Mixed technology
model construct the financial balance axiom should verify that,

eTACB(U, V)VTóeT(UñVT
2 )VñT

1 VTóeTU

This can also be expressed as,

eTACB(U, V)VTóeT(UñVT
2 )VñT

1 VTó(eTUñeTVT
2 )VñT

1 VT

and substituting eTVTóeTU, it yields,

eTACB(U, V)VTó(eTVTñeTVT
2 )VñT

1 VTóeT(VTñVT
2 )VñT

1 VT

óeTVT
1 VñT

1 VTóeTVTóeTU

All steps can be reversed, proving necessity.

This completes the proof.
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452 T. ten Raa & J. M. Rueda-Cantuche

Table 4. Additional assumptions over axioms according to models

Model Axiom M Axiom F Axiom P Axiom S

Transfer AT(U, V)VTeó eTAT(U, V)ó Never Never
AC(U, V)VTe eTAC(U, V)

By-product technology AB(U, V)VTeó eTAB (U, V)ó � �
AC(U, V)VTe eTAC (U, V)

or eTVTó eTU

European System � eTAE(U, V)ó � Never
eTAC (U, V)

Lump-Sum AL(U, V)VTeó eTAL(U, V)ó Never �
AC(U, V)VTe eTAC(U, V)
or VeóVTe

Commodity technology � � � �

Industry technology � eTAI(U, V)ó Never Never
eTAC(U, V)

ten Raa et al. method ACB(U, V)VTeó eTACB (U, V)ó � �
AC(U, V)VTe eTAC (U, V)

or UóVT or eTVTóeTU

5. Summary and Conclusions

The most interesting conclusion is that the material and financial axioms will be
fulfilled under some restrictions on the data (Theorems 1 and 2). For the lump-
sum method the material balance is fulfilled if the total commodity outputs match
respective total industry outputs. A brief summary of the main results is presented
in Table 4. The transfer and the industry technology model need restrictive
conditions in order to fulfil all axioms.

Notes

1. The derivation of use and make matrices was first given by van Rijckeghem (1967) and a noteworthy
precursor is Edmonston (1952).

2. For a more detailed explanation of the consequences of each one of these methods on the construction
of input–output tables, see also Viet (1994).

3. Actually, under the commodity technology model, not only are inputs structures of industries
proportional to their outputs, but also the outputs structures of the commodities they produce.
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Appendix

This Appendix proves that the established hybrid constructs on the basis of
commodity and industry technology assumptions fulfil only the material balance.
As in Kop Jansen & ten Raa (1990) and using their same imaginary use and make
matrices, it also presents counterexamples that violate the financial balance, price
or scale invariance axioms. Let us define the following use and make matrices to
generate counterexamples

D
ow

nl
oa

de
d 

by
 [

In
te

rn
at

io
na

l I
np

ut
 O

ut
pu

t A
ss

oc
ia

tio
n 

] 
at

 1
4:

33
 1

7 
A

ug
us

t 2
01

1 



454 T. ten Raa & J. M. Rueda-Cantuche

Uó�1/2
1

0
1/2� , Vó�1

0
1
1� and pósó�2

1�
In addition, the make table is split into the following V1 and V2 matrices,

V1ó�1
0

0
1�óI, V2ó�0

0
1
0�

A straightforward computation shows that,

góVeó�2
1�, g1óV1eó�1

1�, qóVTeó�1
2�, q2óVT

2 eó�0
1�

and therefore,

AH(U, V)ó�
1/4 1/8
1/2 1/2� and AY(U, V)ó�

1/4 1/8
0 3/4�

with Hó�
2 0
ñ1 1�.

Material balance (Axiom M)

The material balance equation for AH is verified as follows:

AH(U, V)VTeóAH(U, V)qóUĝñ1(ĝ1VñT
1 (Iñq̂ñ1q̂2)òV2q̂ñ1)q (4)

Since it is true that q̂ñ1qóe, g2óV2e and q̂ñ1q̂2qóq2, equation (4) can be
written as:

AH(U, V)VTeóUĝñ1(ĝ1VñT
1 qñ ĝ1VñT

1 q2òg2)óUĝñ1(ĝ1VñT
1 (qñq2)òg2)

(5)
óUĝñ1(ĝ1VñT

1 q1òg2)

and if we substitute q1óVT
1 e in equation (5) bearing in mind that g1ó ĝ1e,

AH(U, V )VTeóUĝñ1(ĝ1VñT
1 q1òg2)óUĝñ1(ĝ1eòg2)óUĝñ1(g1òg2)

óUĝñ1góUe

For AY, axiom M is verified as follows:

AY(U, V)VTeóAY(U, V)qóUĝñ1(ĝ1VñT
1 (IñVT

2 ĝñ1H)òV2q̂ñ1)q
(6)

óUĝñ1(ĝ1VñT
1 qñ ĝ1VñT

1 VT
2 ĝñ1HqòV2q̂ñ1q)

Since q̂ñ1qó ĝñ1góe, g2óV2e and góHq (see Armstrong, 1975, p. 75) equation
(6) can be written as:

AY(U, V)VTeóUĝñ1(ĝ1VñT
1 qñ ĝ1VñT

1 VT
2 eòg2)óUĝñ1(ĝ1VñT

1 (qñq2)òg2)
(7)

óUĝñ1(ĝ1VñT
1 q1òg2)
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Construction of Input–Output Coefficients Matrices 455

for VT
2 eóq2.

If we substitute q1óVT
1 e in equation (7), bearing in mind that g1ó ĝ1e,

AY(U, V )VTeóUĝñ1(ĝ1VñT
1 q1òg2)óUĝñ1(ĝ1eòg2)óUĝñ1(g1òg2)

óUĝñ1góUe

Financial balance (Axiom F)

For both hybrid technology assumptions, the financial balance equation is not
fulfilled since,

eTAH(U, V)VTó(1 1)�
1/4 1/8
1/2 1/2��

1 0
1 1�ó(11/8 5/8),

eTAY(U, V)VTó(1 1)�
1/4 1/8
0 3/4��

1 0
1 1�ó(9/8 7/8)

and

eTUó(1 1)�
1/2 0
1 1/2�ó(3/2 1/2)

Price invariance (Axiom P)

The price invariance axiom is violated since,

AH(p̂U, Vp̂)ó�
1/3 0
1/3 1/2���

1 0
0 1��

1 0
0 1/2�ò�

0 1/2
0 0 ��ó�

1/3 1/6
1/3 5/12�,

AY(p̂U, Vp̂)ó�
1/3 0
1/3 1/2���

1 0
0 1��

1 ñ1
0 1 �ò�

0 1/2
0 0 ��ó�

1/3 ñ1/6
1/3 1/3 �

but

p̂AH(U, V)p̂ñ1ó�
2 0
0 1��

1/4 1/8
1/2 1/2��

1/2 0
0 1�ó�

1/4 1/4
1/4 1/2�

and

p̂AY(U, V)p̂ñ1ó�
2 0
0 1��

1/4 1/8
0 3/4��

1/2 0
0 1�ó�

1/4 1/4
0 3/4�

Scale invariance (Axiom S)

According to the real sphere theorem in Kop Jansen & ten Raa (1990) the material
balance and scale invariance axioms characterize the commodity technology model.
Hence, if it has been proved that material balance holds under hybrid technology
assumptions, necessarily the scale invariance axiom must not hold. Otherwise,
commodity technology model must be imposed. Actually, the scale invariance
axiom holds when the hybrid technology model is reduced to the commodity
technology model.
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