Available online at www.sciencedirect.com

d JOURNAL OF

sScC Cc cT®

IEN ECDIHE T urban

ACADEMIC Economics
PRESS Journal of Urban Economics 54 (2003) 339-367

www.elsevier.com/locate/jue

Increasing returns and perfect competition:
the role of land

Marcus Berliant* and Thijs ten Ra2

@ Department of Economics, Washington University, Campus Box 1208, One Brookings Drive,
. Louis, MO 63130-4899, USA
b Department of Econometrics, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands

Received 14 June 2002; revised 14 April 2003

Abstract

The classical inconsistency between increasing returns and perfect competition is studied. For
example, if firms must pay a fixed cost of entry but then can produce using a constant returns to
scale technology, they will generally operate at a loss, necessitating a government subsidy in order to
attain an efficient allocation. Here we provide examples demonstrating that perfect competition and
increasing returns can be consistent by extending the Alonso model to include production. The key
is that producers use intervals of land, and the price they pay for land interior to the parcels can be
adjusted to provide an implicit subsidy.
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1. Introduction

Our goal is to begin to reconcile the notions of increasing returns and perfect
competition. We demonstrate in our model that equilibria can exist and can be efficient
without government intervention. This finding is established for a rather specific model
with parameter restrictions. Land plays a key role in our analysis. In this context, models
of imperfect competition have been analyzed and are known to produce market failures. It

* Corresponding author.
E-mail addresses: berliant@wueconc.wustl.edu (M. Berliant), tenRaa@UvT.nl (T. ten Raa).

0094-1190/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0094-1190(03)00060-3



340 M. Berliant, T. ten Raa/ Journal of Urban Economics 54 (2003) 339-367

is not known, however, if such failures are due to product differentiation or to the departure
from price taking behavior. We address this issue by assuming that agents take prices as
given.

It is well known that global increasing returns (say, a fixed cost followed by constant
returns to scale production) and perfect competition are not compatible, since at an
equilibrium, the first-order condition for profit maximization—price equals marginal
cost—implies negative profits. Although substantial progress has been made using models
in which price is set at marginal cost but firms are subsidized, or multipart tariffs are
employed, problems still remain; see Bonnisseau and Cornet [14] (as well as other papers
in the symposium issue), Bonanno [13] or Vassilakis [45,46] for discussion.

Our initial goal was to prove a second welfare theorem. Here transfers have generally
been employed in the literature. They can obviously mitigate the problem of negative
profits for producers by simply providing a subsidy to producers who are operating at
a Pareto optimum but who would otherwise make a loss at supporting prices. The idea
that firms yielding increasing returns to scale should be subsidized in order to obtain an
efficient allocation goes back at least to Marshall [29, Book V, Chapter XIlI], the first
edition of which was published in 1890. A precursor can be found in Whitaker [47, pp.
88-89, 228-230], who published writings of Marshall dating from the 1870s. Pigou [35,
Part 11, Chapter Xl], first published in 1920, touches on this subject in passing. Pigou [33,
p. 197]is particularly explicig

In order to maximize satisfaction—inequalities of wealth among different people and
so on being ignored—it is necessary, except in the special case where satisfaction is
maximised by a nil output, for that quantity of output to be produced which makes
demand price equal to marginal coste, which corresponds to the point of intersection

of the demand curve and the curve of marginal costs] Putput, howeverends to

be carried to the point in respect of which the demand curve intersects with the supply
curve. [..] Butin conditions of decreasing costs, where the supply curve coincides with
the curve of average costs, it will not be the right point. Unless the State intervenes by a
bounty or in some other way, output will be carriesds far than it is socially desirable

that it should be carried.

It is important to note that the work of Marshall and Pigou confused scale economies
with externalities internal to an industry but external to each firm, and consequently they
recommended a misplaced Pigouvian remedy for scale economies. Our reconciliation of
increasing returns and perfect competition is direct and invokes no externality argument.

1 For instance, marginal cost pricing relates only to the first-order conditions for optimization for the firms,
so at a marginal cost pricing equilibrium, a firm may not be maximizing profits. Further, a marginal cost pricing
or multipart tariff equilibrium allocation is not necessarily Pareto optimal. (Marginal cost pricing reflects the
first-order conditions for Pareto efficiency, but the second-order conditions might not hold.)

2 Pigou [33] is part of a far-ranging discussion about “Empty Boxes” irBtmnomic Journal addressing this
topic; see, in particular, Robertson [37, p. 22]. Others involved in this discussion are Clapham [15], Pigou [32,34],
Sraffa [42,43], Shove [40,41], Robbins [36], Schumpeter [39], Young [48], and Robertson [38].
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The use of transfers would be an easy way out of the conflict between increasing returns
and a perfectly competitive equilibrium by essentially assuming the conflict away. Instead,
we focus on existence of a competitive equilibrium and the first welfare theorem.

This research has applications to the theory of agglomeration and city formation.
Increasing returns is often used as an agglomerative force in models seeking to explain
how, where, and why cities form. For example, Fujita [19]; Fujita and Krugman [21,22],
and Krugman [26-28], which were preceded by Abdel-Rahman [1,2] and Abdel-Rahman
and Fuijita [3], use a Dixit—Stiglitz [17] framework and increasing returns to generate city
formation in a monopolistic competition context. Since our model will employ increasing
returns in a spatial context, it offers the prospect of addressing questions and generating
testable hypotheses about cities. This is discussed further in the conclusion.

In what follows, we stick as closely as possible to the perfectly competitive ideal, since
it is simplest to analyze, it is a very standard and convenient benchmark, it allows us to
develop proofs of existence of equilibrium (perhaps useful in the imperfect competition
context) without having to worry about other distractions, it may be a good approximation
to reality in large economies, and it will tell us when the welfare theorems are likely to
hold and why. Moreover, it enables us to separate problems due to the spatial context
from those attributable to imperfect competition. Notice that models of marginal cost
pricing, multipart tariffs, and subsidization of firms under increasing returns all employ
close relatives of perfect competition.

We investigate whether a government ought to intervene in markets for commodities
subject to increasing returns in production. The key to the analysis is provided by Berliant
and Fujita [9], who show that for Alonso’s urban economic model, a model of pure
exchange on the real line where agents are required to own intervals that represent land
parcels, there is generally a continuum of equilibria under perfect competitioina-
marginal land (that is, land not at the endpoints of an interval owned by an agent) is not
priced uniquely, thus allowing a kind of indeterminacy in the expenditure of agents on
land. It is this kind of indeterminacy that we exploit below to effgoplicit transfers to
producers (by keeping the infra-marginal price of land low) who would otherwise have
negative profits.

Section 2 presents the notation and model while Section 3 introduces an example with
one producer and one consumer, solving for two different types of equilibria. Section 4
shows how these equilibria can be extended to a model with two producers and multiple

3 A spatial model with finite numbers of producers and consumers (rather than a continuum) is examined
because in the arguments we use, agents employ intervals rather than densities of land. By this, we mean that
agents own land parcels represented by sets of positive Lebesgue measure in a Euclided®) sptiee (han
owning parcels represented by a quantity at a point. The latter is more common in urban economics, and is usually
called a density. Berliant [7] shows that the usual approximation of continuum economies by finite economies
does not work when land plays a role in the models, so demand and equilibria of the continuum models may not
be close to those of any interesting finite model. It is then reasonable to ask if the continuum models make any
sense. Examples in Berliant and ten Raa [11] show that equilibrium can fail to exist in the monocentric city model
under standard assumptions on preferences. Examples in Berliant et al. [10] show that the welfare theorems can
fail in the monocentric city model. Berliant and Wang [12] show that even utilitarian social optima might fail
to exist in continuum models with land. The implication of these examples is that the use of a continuum of
consumers solves some of the problems associated with the indivisibility of location, but creates others.
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consumers, Section 5 presents a version of the first welfare theorem, while Section 6
concludes. Appendix A contains all of the proofs.

2. Themode

We introduce production into Alonso’s [4] model of pure exchange. The model of pure
exchange was developed further by Asami [5], Asami et al. [6], Berliant [8], and Berliant
and Fujita [9].

Consider a long narrow city represented on the real line. Land is given £y{0, 1),
wherel is the length of the city. In Section 4, it will be convenient to use another interval
of the real line forX to reduce computations. The density of land available is 1 at each
pointx € X.

There arei = 1,...,1 consumers andg = 1,...,J producers. Each consumer has
an endowment of 1 unit of labor, which will be supplied inelastically. For simplicity,
labor is assumed to be homogeneous, so labor income is the same for all consumers.
Moreover, consumers all have the same preferences, and will get utility from a composite
consumption good and land. Thus, Ri — R. Consumers are not endowed with
composite good or land. Composite good is produced, while an absentee landlord is
endowed with land. We write(c, s), wherec is the quantity of consumption good ands
the quantity of land consumed; the latter is equal to the length of the interval owned by the
consumer. For consumerc; is composite good consumptiaf,is land consumptiony
is the wage rate, and;, a; + s;) C X is the parcel of land owned by

Notice thatw is assumed to be independent of the location of labor. This is an
assumption of perfect competition, that each agent takes prices as given independent of
their own actions and the actions of other agents, particularly firms’ locations. Without
such an assumption, equilibrium allocations are not likely to be Pareto optimal. Since our
purpose is to reconcile increasing returns with perfect competition, we must take prices
as parametric. Of course, for other purposes, imperfect competition is a more suitable
premise. If wages are allowed to vary with location in the context of perfect competition,
then the constant wage gradient equilibrium that we study here naturally becomes a special
case? Consumers have no intrinsic preference for location.

4 The decision whether or not to use a wage gradient is not at all obvious. Our model is not one of multiple
regions, but rather of one city, since we have commuting cost but no transport cost. From a positive viewpoint,
one does not observe in the real world wages paid to workers differing by their location of residence within a
city or by producer location within a city. From a normative viewpoint, if we had wages differing by producer,
our equilibrium allocations would likely not be efficient, since symmetry of the allocation would be destroyed.

In the literature, for example, Fujita and Ogawa [23] use a wage gradient that differs by location of a firm (but
not by location of consumer residence). Subject to the remarks above, such a structure would be admissible in
our framework, but would make the analysis much messier. In general, addition of a wage gradient to a model
will not add extra degrees of freedom to equilibrium determination. Although more free variables are added to
the system in the form of wages depending on locations, extra market clearing conditions equating labor demand
to supply at each location are also added.
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Composite consumption good, assumed to be freely mobile, is taken to be numeraire.
The price of land is denoted by an integrable functiorX — R. The price of consumer
i’s parcel isfa‘j"“" p(x) dm(x). Throughoutm is the Lebesgue measure on the real line.

Since the labor market is competitive and consumers pay their own commuting cost,
consumers will turn to the producers who minimize their commuting cost. Let proglucer
use land parcdb;, b; 4 o;) € X. Definer > 0 to be the constant marginal monetary cost
(in terms of composite consumption good) of commuting an extra mile. Then the cost of
commuting to producey is given by

Tij(aiasivijaj) =t-inf{llx — yll | x € [ai,ai +si), y €[bj, bj +0))},

the closest point distance between consuiard employerj. When consumers optimize
utility subject to their budget constraints, they will choose to commute to the closest
producer. However, we must account for the possibility that there is more than one closest
producer.

This is the form of commuting cost used by Alonso [4] and Berliant and Fuijita [9];
it incorporates a constant marginal cost of transport per unit distance to the closest firm.
Notice that commuting cost depends on both the consumer location and the location of the
nearest employer.

The minimal commuting cost available to consuner given by

.
ijnTi (ai,si,bj,0}).

For notational simplicity, defin® = [b1, 01, b2, 02, ..., by, 0] and

Ti(a;, si. B) = [T Mai, si by, o), ..., T (i, si, by, o))

The fact thal‘T/ can depend on the allocation of land to produtereates an externality,
in that the choice of land parcel by an agent (in particular, a producer) can affect the budget
constraint of another (in particular, a consumer). What is fascinating about this observation
is that, as we shall see in Section 5, this externality might not create a market failure.

Let Q; be aJ-dimensional unit vector (one component 1 and all others 0), to indicate

consumer’s choice of employer. Lef be the collection of all such unit vectors, anng’t
denote componentof Q;.
Consumel’s optimization problem 1%

max u(ci,s;)

a;,si,¢i, Qi

5 Unlike most of the literature in urban economics, we do not introduce or use the concept of “bid rent,”
since we have no need for it. The results and proofs are more easily given in primal rather than dual form.
Any references to “marginal willingness to pay” for land are simply to the marginal rates of substitution at a
particular bundle of commodities. Notice that agents take into account the total supply of land when solving
their optimization problems. This constriction of the commodity space is essential to our results, and appears in
the spatial economic literature more generally. It is hard to imagine that a consumer visualizes simultaneously
purchasing two different houses on the same parcel or buying a house in a lake when solving her optimization
problem.
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a;+s;
sit. ¢+ / px)dm(x)+ Q; - T;(a;, si, B) = w. 1)

ai

This framework allows consumers to choose to work at a firm so that commuting cost
and commuting distance are minimiz&d.

Producers use land and labor to produce composite good. All producers have the same
production functiorg : R?r — R. Let producerj use land parceb;,b; + 0;) € X. The
scalarg; € Ry represents the labor demand of fiimWe define output of firmy to be
zj = g(oj, q;). We assume throughout most of the sequel #fiatg) = g - min(o, ¢) — f
for o > 0 andg > 0, where f is a fixed cost in terms of composite good. We define
£(0,0) =0, so it is possible for a firm to shut down. This has the implication that in
equilibrium, profits must be non-negative. The only part of this paper where we alter this
production function is at the beginning of Section 6, where it is convenient to normalize
the labor input for computational purposes. The profit optimization problem of/filsn

b_,'+(7j
;= max g(oj,q;) — / p(x)dm(x) —g;w. (2)
bj.0j.qj ;
j

List the firms’ profits in the vectot = [nq, ..., /]

We have assumed, implicitly, that only the size of an interval matters in production.
Thus, output is a function of land and labor where both inputs are represented by scalars
and, therefore, returns to scale can be defined as usual. It is the fixed toat gives
us increasing returns to scale. The particular form of the production function that we use
implies that average cost is globally decreasing, so increasing returns are in fact global.

Following Alonso [4] and the new urban economics literature, an absentee landlord is
endowed with all of the land, but gets utility only from composite good. For simplicity, we
also endow the absentee landlord with all of the shares in all of the fitmequilibrium,
the absentee landlord collects all of the land rent. Takicgands as given, the landlord
consumesfé p(x)dm(x) + ij-zlnj. The composite good consumption of the landlord
will be denoted by, .

Notice that, as in the Alonso model, preferences and production are location indepen-
dent.

We continue with the analogs of standard definitions for this model.

Definition 1. An allocation is a list[(c;, a;, s;, Qi){zl, cL, (zj, b, 0, q,-)le], where for
everyi=1,...,landj=1,...,J, ¢i,zj,cL,qj €Ry,si,ai,bj,05 € X, andQ; € S.

6 Strictly speaking, a consumer could choose not to work, but then good consumption would be zero and
utility would be suboptimal in all theorems of this paper. Hence we ignore the possifilitz 0. Also notice
that utility levels will be equal across consumers in equilibrium.

7 It seems clear that one could allow consumer ownership of stock in the firms without altering the results
much, but at the cost of complicating the arguments and notation.
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Definition 2. An allocation[(c;, a;, si, Qi)!_y. cL, (zj. bj, 0}, qj)jj.zl] is calledfeasibleif®

1 J
D lei+ Qi Titaisi, B)] +eL < Z (3)
i=1 j=1

Zj:g(astj) fij:l,...,J, (4)
1

ZQ{:L]]' fij=1,...,J, (5)
(la;, a; +si))i1=l’ (Ibj. b; +oj));=l form a partition ofX. (6)

Definition 3. A feasible allocation[(c;, a;, s;, Qi){zl,q_, (Zj,bj,O'j,qj')‘}zl] is called
Pareto optimal with J active firmsif all z; > 0 and there is no other feasible allocation
[(c}, 57, af, O]y, ¢, (2,6, 07 qj)] 1] with all ; > 0 such that| > ¢ and for each
i=1,...,1,ulc,s)> u(c,,s,) with a strict mequahty holding for at least one of these
relations.

l’l

Itis important to note that this concept of efficiency does not allow entry or exit of firms.

Definition 4. A competitive equilibriumconsists of a feasible allocati¢¢;, a;, s;, Qi){zl,

CL, (zj,bj,crj,qj)le], an integrable land price functiop: X — R, a vector of profits

7 eR’anda wageu € R (the freely mobile composite consumption commodity is taken
to be numeraire), such that

l

J
CL=/p(x)dm(X)+ZNj, (7)

0 J=t
(ciyai,si, Qi) solves(1l) foi=1,...,1, (8)
(wj,zj,bj,0;,q;) solves(2) forj=1,...,J. 9)

The allocation component of a competitive equilibrium is called egnilibrium
allocation.

This equilibrium concept does allow firms to shut down, but does not allow entry beyond
J firms?2 In equilibrium, firm profits are non-negative (and possibly positive).

8 Condition (5) requires that all people work. Strictly speaking, this is not necessary. However, since we will
assume that there is no disutility of work and utility is increasing in consumption, (5) will hold in equilibrium.
Also, condition (6) requires that all land is used. This will hold in equilibrium since we will assume that utility is
increasing in land consumption.

9 Debreu [16] has a similar feature, but there it is less innocent, for he assumes non-increasing returns to scale,
which favors small-scale production and unlimited entry. Our inclusion of a fixed cost puts a bound on the number
of firms.
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3. Existence of equilibrium with one producer and one consumer

Due to the discreteness and nonconvexities inherent in the riddel,prove that an
equilibrium exists by actually finding some.

In this section we examine the following set of examples. Let 1 andJ = 1,
and for notational simplicity, drop the subscripts referring to agents. We will find
particular equilibria (others exist as well) with two types of rent densities: continuous and
discontinuous.

Definition 5. We say that thdunctional form restriction holds when utility satisfies the
following condition:u(c,s) =c+ « - In(s), a > 0.

Next, let us give bounds on exogenous parameters for continuous equilibrium rent
densities.

Definition 6. We say that thgrarameter restrictions for continuous equilibrium rent
densities hold when the following conditions are mét> 2.87, 0< f < ¢.(a, 1), B >
B.(a, 1), t > 1.(at, 1), Where the function®., B., and ., all mappingR2 into R, are
defined in Appendix A.

In essence, what is needed is that total Iapd2.87, fixed costf is small relative to the
marginal utility of land(«), the marginal produdig) is large relative ter, and commuting
cost(z) is large relative tax. Clearly, these restrictions represent a set of parameters with
nonempty interior.

The fixed cost must be small here to guarantee that the producer can be subsidized on
its parcel so that the fixed cost is covered but the consumer will not encroach. If the fixed
cost is high, then a low price of land on the producer parcel covering the fixed cost will
induce the consumer to encroach.

Theorem 1. Under the functional form restriction and the parameter restrictions for
continuous equilibrium rent densities, there exists an eguilibrium.

For proof, see Appendix A.

Figure 1 provides a picture of the equilibrium. The horizontal axis represents the
location space, while the vertical axis is used for the land price density (in dollars per
foot or inch). The horizontal axis is located not at height zero, but at height- 1), the
equilibrium marginal utility of land for the consumer. The firm is located on the parcel [0,1)
while the consumer buys the remainder of the land. The shaded area is the implicit subsidy
from the landlord to the producer, in dollars. The price density is in fact the minimum of
two curves representing marginal willingness to pay for land of the consume@®@ver1)
and(1,/) (starting from the consumer’s right and left endpoints, respectively).

10 As described in Berliant and Fuijita [9], demand (and in the present model, supply) correspondences are not
convex-valued. In fact, the contract curve in the pure exchange model is disconnected; see Fig. 2 of that paper.
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RENT
p(x)
($/ft)

Implicit subsidy

Land
. X

1 1) ] (locations)
<— Firm —><—— Consumer —>

af(i-1) |

Fig. 1. Continuous equilibrium rent density.

Heuristically, this is an equilibrium for the following reasons. Regarding the consumer,
the first order conditions for problem (1) tell us that the price of the marginal piece of land
purchased on the end farthest from the firm must be equal to the marginal willingness to pay
for land, orp(a + s) = «/s, and that the price of marginal piece of land purchased closest
to the firm, p(a), must be between the marginal willingness to pay for land genesalty,
and the marginal willingness to pay for additional land plus the associated reduction in
commuting coste/s + ¢, from having the front of the parcel closer to the firm. The latter
condition arises because marginal commuting cost drops discontinuously fimi as
the consumer becomes adjacent to the firm. With our quasi-linear utility function, these
first-order conditions are satisfied by the patdel). Notice that ifz is not large enough,
then this last condition might not hold; that is why there is a parameter restriction on
Regarding the firm, profits are location independent, so the firm simply wants to buy a
parcel that is cheapest per unit of land purchased. Given the price density, either the left
endpoint is at 0 or the right endpoint is at 1. Optimization over the amount of land used by
the firm yields a price equals marginal revenue product condition. Given an equilibrated
wage, this will occur when the firm uses eithér1) or [/ — 1,1). Symmetry of the price
density around/2 is important for showing that the consumer and firm would not want to
inhabit the same parcel.

Land payments follow the contour, but land use by agents is adjusted in response to
the marginal price paid for an extra unit of land. While the firm would incur a loss if it
had to pay this marginal price for each unit of land it uses, lower inframarginal prices in
[0, 1) can generate zero profit.Notice that if fixed cosff is too large, the implicit subsidy
cannot cover it. That is why there is a parameter restrictioff on

Next we shall study another class of equilibria for this same model, one that is motivated
by the observation that marginal commuting cost is discontinuous when the consumer and
producer are adjacent. Marginal commuting cost drops fréonzero when the consumer
and producer touch, thus allowing a discontinuity in land rent at the boundary.

11 The same kind of subsidy could apply to consumers, but it is not relevant for them. There is no analog of the
non-negative profit condition for consumers, whereas this is a participation constraint for producers in our model.



348 M. Berliant, T. ten Raa/ Journal of Urban Economics 54 (2003) 339-367

Definition 7. We say that thearameter restrictions for discontinuous equilibrium rent
densities hold when the following conditions are mét> 3.19, 0< f < ¢q(a, 1), B >
Ba(a, 1), t > t4(ae, 1), where the functiong,, By, andz,, all mappingR? into R, are
defined in Appendix A.

Once again, total lan@) needs to be large enough, while fixed c@st must be small
relative to the marginal utility of landx), the marginal produai8) must be large relative
to «, and commuting costr) must also be large relative to. Again, these restrictions
represent a set of parameters with nonempty interior.

Theorem 2. Under the functional form restrictions and the parameter restrictions for
discontinuous equilibrium rent densities, there exists an equilibrium.

For proof, see Appendix A.

Figure 2 provides a picture of the equilibrium. The horizontal axis represents the
location space, while the vertical axis is used for the land price density (in dollars per foot).
The horizontal axis is located not at height zero, but at heigiit — 1), the equilibrium
marginal utility of land for the consumer. The firm is located on the pdf:dl) while the
consumer buys the remainder of the land. The shaded area is the implicit subsidy from the
landlord to the producer, in dollars.

The intuition for why Fig. 2 represents an equilibrium is very much the same as the
intuition for why Fig. 1 represents an equilibrium. The discontinuity in rent is admissible
for the following reasons. From the viewpoint of the consumer, it does not induce further
purchase of land, since at 1 (and to the left of 1), price is just equal to marginal willingness
to pay,«/(I — 1), and the marginal reduction in commuting cost from moving left of 1 is
nil. From the viewpoint of the firm, expansion of its parcel to the right of 1 means less
profit, since the marginal revenue product of land is equal to its price at 1.

RENT
p(x)
($/7)

p(x)

Implicit subsidy

T * ' X
2 -1 I (locations)

Consumer ——>

<— Firm

Fig. 2. Discontinuous equilibrium rent density.
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4. Existence of equilibrium with two producer sand many consumers

This generalization of the model is not as easy as it may appear. In this section, first
we will examine the natural extension of the model to multiple producers and explain what
goes wrong with existence of equilibrium. Then we will make a modification so as to obtain
existence of equilibrium.

Consider a model with one producer and an even number,saf 2onsumers. Let us
examine a continuous rent density equilibrium. To keep the model as close as possible to
the one in the last section, let us change the technologydoy) = 8 - min(o, q/1) — f,
and letX = [—I + 1,[]. One way to construct a continuous rent density is illustrated in
Fig. 3. In the end, this figure wilhot represent an equilibrium. Again, the horizontal axis
represents location space while the vertical axis gives the price density for land in dollars
per foot. The horizontal axis is located at height/(I — 1) rather than at zero on the
vertical axis. The price density is the same as in the previous section for the consumer to
the right of the firm. We replicate the same density for the consumer to the left of the firm.
This necessitates an alteration of the density on the firm’'s parcel, due to the presence of
land to the left of the firm that it would want to buy unless the price were raised (this is
justified by the first-order condition for firm optimization with respecbjoThus, we take
the maximum of these two price densities. However, land at the extreme left and extreme
right in X is cheapest under this new density, so the firm would move out to an extreme.
To prevent this, we must raise the price of land in the extremes by replicating a shifted
price density once again, and taking the maximum of all price densities. This will violate
the first order conditions for the consumers, which state that the price of the edge of a
parcel closer to the firm must behigher than the edge further away from the firm (as in
Berliant and Fuijita [9]). This statement does not apply to the innermost two consumers,
since there is a discontinuity in their marginal commuting cost at zero distance; there is
no such discontinuity for consumers not adjacent to the firm, so this statement must apply

RENT p(x) ($/ft)
Land
g — ! ) f—y X
<— Consumer —><— Consumer —>KFirm>€<— Consumer —><— Consumer —> (Iocatlon)
al
1

0-

Fig. 3. Multiple consumers—continuous rent density.
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to them. Moreover, given that the price density on each consumer parcel is the same, the
total cost of each consumer parcel is the same, so why would any consumer choose to live
on a parcel not adjacent to the firm? They would pay the same total land rent, but incur a
higher commuting cost further out, thus attaining a lower level of utility. Figure 3 does not
represent an equilibrium.

So how can we solve this problem and obtain an equilibrium? The answer to this
guestion lies in noticing that the problem we have is overconstrained. We are asking too
much of the rent density, in that it reflects differences in commuting cost among parcels
as stated above (essentially the Mills [30]-Muth [31] condition for our modetyt at
the same time, reflects the fact that the profit function only accounts for the cost and not
the location of the parcel, so the producer will always choose the cost minimizing one.
In other words, consumer optimization requires that rent decreases as distance from a
producer increases, to compensate for commuting costs, while the producer will always
find the lowest cost parcel, located as far as possible from its current spot.

If prices are low on the producer parcel, then consumers will move there to reduce
commuting cost. If prices are low on consumer parcels distant from the producers to
compensate for commuting cost, then producers will move there to reduce land cost.
Equilibrium is not likely to exist. This is in essence the problem discovered by Koopmans
and Beckmann [25] in their investigation of the quadratic assignment probigithough
their model is different from ours, this kind of problem pertaining to existence of
equilibrium arises in most location models where all agents and resources are mobile.

We must specify out-of-equilibrium commuting costs properly. In the pure exchange
version of the Alonso model, the location to which consumers commute, the central
business district or CBD, is given and occupies no land. Commuting cost is given by the
“front location” or “front door” (closest point) distance from the consumer’s parcel to the
CBD. See Asami et al. [6] for elaboration. However, if a producer (or the CBD) occupies
space, it is unclear, especially out of equilibrium, where the consumer must commute to.
For instance, if the consumer decides to buy a subset of the parcel used by a producer,
clearly a disequilibrium situation, what is its commuting distance and cost? This must
be specified, even out of equilibrium, in order to verify whether a particular situation
represents an equilibrium or not.

We assume that if a consumer outbids a producer, he or she can no longer work at
that location, since the producer will no longer be there. Consumers and producers remain
price takers; this is simply a specification of disequilibrium commuting costs. Formally, it
amounts to defining commuting distance for consuirterfirm j as

. infxel(a,-,a,--i-s,-), _)'E(bj,bj-‘ro'j) t”x - y”
T!(aj, si.bj,0)) = if (@i,ai +s5:)N(bj,bj+0j)=0,
oo if (ai,ai+si)ﬂ(bj,bj+aj)7é@.

12 see, for instance, Fujita [20, p. 25, Eq. (2.37)] for a nice statement and explanation.

13 The quadratic assignment problem is distinct from, but related to, the linear assignment problem (or one-
sided matching problem) that is generally more familiar to economists. The quadratic assignment model allows
flows of (intermediate) goods between agents, at some cost.
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Fig. 4. Equilibrium with multiple consumers and two firms.

Commuting cost is defined to be r[)iiﬂ/ (ai, si, B), analogous to the Alonso model. We
say thatcommuting cost satisfies the functional form restriction when this commuting cost
function is used? Notice that this commuting cost function is not upper semicontinuous
in consumer location; it can drop discontinuously as the intersection of consumer and
producer parcels tends to the empty set.

Figure 4 illustrates what an equilibrium will look like. The horizontal axis represents
the location spac& = [—2I, 2/], while the vertical axis is used for the land price density
(in dollars per foot). The horizontal axis is located not at height zero, but at height
p(21), the equilibrium marginal utility of land for the consumers located farthest from a
firm. Equilibrium configurations consist of individual producers surrounded by commuting
consumers. This configuration involves agglomeration around a producer, essentially a
company town. Notice that parcels get cheaper as we move out away from a firm. This
is necessary in equilibrium in order to compensate for the increased cost of commuting as
distance from the firm increases, for otherwise nobody would live in the hinterlands. Notice
also that we can do this while still making the firm’s parcel the cheapest per unit cost of
land, so the firm has no incentive to move. The modification of the commuting cost function
implies that no consumer will encroach on a producer’s parcel, since encroachment means
that the consumer must commute to the next closest producer, requiring a large jump in
expenditure on commuting. Thus, the commuting cost deters consumer encroachment into
a firm’s parcel, and the low price of land on a firm’s parcel keeps the firm there.

14 We intend to attack the Koopmans—Beckmann quadratic assignment problem head on, using the same
modification of out-of-equilibrium transport costs that we have used here for commuting costs. If an agent wants
to cohabit a parcel with another, then it must go elsewhere for supplies (or more generally, transactions). In
closing, we note that the quadratic programming disease is present in many location models.
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There will be some restrictions on the parameters. The equilibrium will have the same
pattern as equilibrium in the Alonso model, that consumers with higher wages live further
from the firm and buy more land. As in Berliant and Fuijita [9], we try to find equilibrium
allocations that are Pareto optimal and use the property that richer consumers purchase
more land and are located farther from the producer (otherwise we can switch positions
of the consumers, save on commuting costs, and create a Pareto improveniant).
simplicity, we shall only examine the case when all consumers are identical.

To make notation simpler, leX = [—2/, 2/]. We focus on the part of the economy
to the right of 0 inX; the part to the left will be symmetric. We return to using the
production functiong(o, ¢) = B - min(o,q) — f. There are 4 consumers. In contrast
with the assumptions of the preceding section, we allow a general utility function. The
utility function of every consumer ig(c, s), whereu: Ri — R satisfies the following
conditions, the first three of which are adapted from Berliant and Fuijita [9, Assumption 1].
Letc = C(s, u) define the indifference curve at utility lewelnd denote a partial derivative
by a subscript. As is standard, the implicit function theorem gives us-tag(s, u) =
(us/uc)(c, s). Thisis the marginal rate of substitution of composite good for land, or the
marginal willingness to pay for land.

Definition 8. A utility function u is said to bewell-behaved if it satisfies the following:

(i) On R?H, u is twice continuously differentiable, strictly quasi-concavge> 0, and

ug > 0.

(ii) No indifference curve intersectin@ir cuts an axis, and every indifference curve
intersecting?i + has ther-axis as an asymptote.

(i) Lot (or land) sizes is a normal good 0R§r+.

(iv) The composite consumption commodity is a normal gooﬂ%ﬁq.

(v) For each fixed:, —C (s, u) is a convex function of.

(vi) For each fixed > 0, Cy,(s, u) is a nondecreasing function of

Cobb-Douglas utilities are an example.

Definition 9. The parameter restrictions for two producers are said to be satisfied if
the following hold:7 > 2,1 > 21>+ 1, 0< f/B < (16/17)1, t/B > 9/17. Finally, the
marginal willingness to pay for land satisfies the following inequality at a particular (given)
allocation(c, 5) > (0, 0) (specified in Appendix A):(us/uc)(c,5) > 0(1,1, B, f,t), where

the functiord : R®> — R is given in Appendix A.

For example, a CES utility function will satisfy the last inequality if parameters are
chosen appropriately.

These parameter restrictions imply that the total land avail@ple large relative to the
number of consumers and that marginal prod@gtis large relative to fixed costs (or that

15 if land is a normal good, consumers with higher wages and thus more income will purchase more land.
Although land is not strictly normal in the example we considered in Section 3, it is weakly normal in the sense
that the income derivative of demand for land is zero, so the argument applies.
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the number of consumers is large relative to fixed costs) but small relative to commuting
costs. The condition on marginal willingness to pay for land at a particular bundle implies
that one consumer’s land consumption cannot become too small relative to another’s.

Theorem 3. If the utility function is well-behaved, commuting cost satisfies the functional
form restriction, and the parameter restrictions for two producers hold, then there exists
an equilibrium.

For proof, see Appendix A. Figure 4 provides a picture of the equilibrium, and was
explained earlier in this section.

The strategy of the proof is as follows. Guess that the firms’ parcel$-aile+ 1),
—(—D]and[l —I,1+ I]. Then we fix a wage rate, and solve the consumer equilibrium
problem on the parcels not occupied by firms, exploiting the results of Berliant and Fujita
[9] to construct an equilibrium. We set the firm land price lower than the lowest consumer
price, the difference depending only on fixed costs, total land available, and the number of
consumers. Then we set up the zero profit condition of the firm in equilibrium, and find a
wage rate that solves it. This wage rate, the implied rent density, the allocation of land, and
the allocation of consumption good form an equilibrium. The hard part of the proof is to
show that no consumer would intrude on a firm’s parcel, and vice versa.

The details of the proof can be found in Appendix A.

5. TheFirst Welfare Theorem

In this section we show that an equilibrium allocatiam be first best, though it is not
necessarily first best. There are two reasons an equilibrium allocation might not be first
best in this model. First, thentry or exit of a firm causes an externality in that the firm
does not account for the changes in commuting cost to consumers as a consequence of
its decision. Second, tHecation decision of a firm causes an externality in that the firm
does not account for the changes in commuting costs of consumers as a consequence of its
decision. We can characterize equilibrium allocations that are optimal in the second sense,
namely with a fixed number of firms.

For notational convenience, in this section we ise [—2/, 2] as the totality of land
available. The production function remaigi&, g) = 8 - min(o, ¢) — f and the number of
consumers remainks

Definition 10. An allocation[(c;, @i, si, Qi){_y, cL, (zj. bj, 0}, q;)]_] is calledsymmet-
ric in production if '

(i) the number of consumers commuting to a firm from the left and right are equal and the
same for all firms; that is, for alf, the cardinality of the set§ | 1 <i < I, Q{ =1,
a; <bjyand{i |1<i <1, Q{ =1,a; > b;} is the same and independentjofand

(i) the midpoints of the firm land parcels are evenly dispersed; that is, if the numbering
of firms is such that the midpoints of their parcels are ordered from left to right, then
bj+oj/2=-2+2/]+4 —Di/J.
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Notice that by the first requirement;(2J) must be integer.

Due to the form of the production function, for all producg¢rsand usage is; =1/J
at any equilibrium allocation that is symmetric in production. If we wish to examine the
efficiency properties of an equilibrium allocation in which a firm is shut down, then we can
simply reduce/.

Theorem 4. Supposethat the utility function u iswell-behaved. Fix any equilibriumthat is
symmetric in production, and set J to be the number of firms j with z; > O (eliminating the
firms that are shut down). Then the equilibrium allocation is Pareto optimal with J active
firms.

For proof, see Appendix A.

The purpose of this result is to cover the situation studied in Section 4. The result can
easily be extended to the situations discussed in Section 3, wher¢0,/), I = 1, and
J =1, or more generally to cases wher&2J) is not integer. However, the benefit of
additional generality from such results is exceeded by the cost of additional complexity
that is introduced.

Notice that no agent has as their objective the minimization ovesf the fixed

cost of J firms plus total commuting costfJ + Y/_min; T/ @/, s, BY), where
(ai.s].....a].s], B7) is an equilibrium parcel configuration with active firms. The
landlord comes closest to having this as an objective (through maximization of land rent);
an equilibrium concept in which the landlord implicitly chooses the number of active firms
by choosing the rent density could be formulated, but the objective is still not quite the same
as minimization of fixed costs plus aggregate commuting cost. Sing@ot chosen by an
agent who accounts for the externality, one cannot in general expect equilibrium allocations
to result in an optimal number of active firms. This explains the notion of efficiency that is
used here, which is conditional dhactive firms. IfJ happens to minimize fixed cost plus
aggregate commuting cost, then Theorem 4 implies that an equilibrium allocation that is
symmetric in production is first best.

6. Conclusions and extensions

Using some classes of examples, we have examined how land can reconcile increasing
returns and perfect competition in the following sense. In a model without location,
production of a commaodity using a technology requiring a fixed cost followed by constant
returns to scale willimply that only one firm producing this good will operate in an efficient
allocation. However, in a spatial model with commuting cost, such as the one examined
here, there is a trade-off between returns to scale and the cost of accessing a firm, thus
limiting the extent of the market served by any single firm, and therefore allowing multiple
active firms in an efficient allocation. A perfectly competitive equilibrium can result in a
land price scheme that limits firm size optimally and provides a subsidy to active firms
consistent with efficiency.

The numbers of firms and consumers can be made large by replicating the example of
Section 4.
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The questions we have studied seem important not only in the theory of industrial
organization, in that government intervention in markets for goods produced under an
increasing returns to scale technology may not be justified, but also in the theory of spatial
economics. For example, we can separate results due to imperfect competition from those
due to the presence of location in models. These questions are of central interest to urban
economics and location theory as well. The Spatial Impossibility Theorem of Starrett [44],
as interpreted by Fujita [18], tells us that some assumption of neoclassical economics must
not hold if we are to generate equilibrium models of agglomeration. Here we have used
increasing returns and perfect competition, but we are able to generate agglomeration and
factory towns in equilibrium without imperfect competition. Unlike much of the other work
on agglomeration, our equilibrium configurations can be first Hest.

Here we have assumed perfect competition, but have not justified this assumption
formally. The latter should be the subject of future work; the tests of Gretsky et al. [24]
for perfect competition should be useful.

One testable implication derived from the model is that the unit land price of a firm's
parcel should be low relative to the unit price of residential land surrounding the producer.
Of course, the hazards involved in testing this hypothesis include the difficulty in separating
the value of land from structures as well as zoning laws.

Another issue of interest is the conjecture that, in both this model and the simpler
Alonso exchange model, even though equilibria exist and equilibrium allocations are
Pareto optimal (see Berliant and Fuijita [9] for the exchange case), the core can be empty.
Thus far, we have a quasi-linear example (see Section 3) where the emptiness or non-
emptiness of the core depends on endowments. We intend to look at this more generally,
and examine the implications for core convergence.
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Appendix A

A.1l. Parameter restrictions for continuous equilibrium price densities

¢c(a,l)=a/ll =2] —a-In[( —1)/( - 2)],
Be(a,)=a/(—-2)+2x-In[(—1)/(1/2—1D)]—a-In[( —1)/(—2)],
(e, 1) =2a[1/( —2) —1/1].

It is easy to see that the functiofis and B, are positive.

Proof of Theorem 1. Letp(x) =a/(—x—1)forx <1/2,p(x) =a/(x—1)forx >1/2,
b=0,0=1,9g=1,z=8—f,a=1,s=1-1,0=[1l,w=8—a/(—2),

rn=B—f-w—a-InN[((-1)/(—2)],
c=w—{20-IN[l—1)/1/2—D]—a-In[(—1)/( -2}
(which is non-negative by the assumption@n andc,. =2« - In(({ —1)/(/2— 1)) + .
We claim that this is an equilibrium. Figure 1 provides a sketch of the price density.

First, we verify that this is indeed a feasible allocation. To verify (3), note that
commuting cost is zero in this allocation, and calculate:

-1 -1 [ —
c+cL=w—(Za'lnl/z_l—aolnm>+2a~|nl/2_1+,3—f
_w_a.lng
-2

=B-f=z
Conditions (4) and (5) are obvious. Finally, note tf@tl), [1, ) is indeed a partition
of X, so (6) holds.
Regarding the equilibrium conditions (7)—(9), (7) can be verified simply by calculating
the total area under the price density, I[(l — 1)/((l/2) — 1)], and adding to it profits.
Problem (1) can be written as the following unconstrained optimization problem by
substituting the budget constraint far

a-+s
maxo - In(s) +w — / px)dm(x) —t-max0,a —1).
a,s

a

The first-order condition with respect %ois p(a + s) = «/s; this is verified for our
price density ata =1 ands = — 1. The first-order condition with respect to is
pla)—pla+s)=tifa>1,pa)—pla+s)€[0,t]ifa=1,pa)—pla+s)=0ifa < 1.
This is an interesting and important fact. Notice first that# 1, the parameter restriction
ont impliesp(a) — pla+s)=a/(l —2) —a/(—1) <2a[l/(—2)—1/1] <t, SO our
equilibrium satisfies the first-order condition. Second, this first-order condition is a result
of the assumption that closest point distance is all that matters when computing commuting
cost, so discontinuousarginal commuting cost is the consequence. Total commuting cost
is continuous.
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Regarding second-order conditions for the consumer, it is rather evident that the
consumer cannot do better by decreasing its parcel size to the righi2 pkince the
rent curve is equal to the marginal willingness to pay for land of the consumer with
left endpoint at 1; if the left endpoint is greater than 1, then marginal willingness to
pay exceeds price. For pointse (1,1/2], we must prove that marginal utility of land
exceeds price less the reduction in commuting cost from purchasing additional land closer
to the producer. Marginal utility ia/(I — x), while price isa/(I — 1 — x) and commuting
cost ist. Thus, forx € (1,1/2], we must show that/(I —x) > a/( —1—x) —t. The
parameter restriction onist > 2 - a(1/( —2) — 1/1), sot > «[1/(/2— 1) — 1/(/2)]
ande/( —x)>a/(l—1—x)—rtatx =1/2. Since

ai[a/(l —x)—a/(l—1-x)+11=a[1/(-x)*-1/0 - 1-x)?] <0,
X

a/(l —x) 2 a/(l—1—x)—1t forall x € (1,1/2]. The consumer cannot do better by
increasing its parcel size (starting frof, /)) since for larger parcels, the rent curve
a/(l —x — 1) is greater than the marginal willingness to pay for lafidl — x). Due to the
symmetry of the rent curve, the consumer cannot do better by owning a parcel containing
{0} rather thar{l}. Thus, the equilibrium allocation solves (1) for the consumer.

With regard to the firm, notice that optimization will imply that= o and optimization
problem (2) reduces to

b+o
rEaX,Bocr —f - / p(x)dm(x) —w-o.
o /

The first-order condition with respectois 8 — p(b + o) — w = 0, andw was chosen
to satisfy this equality fob = 0 ando = 1. The first-order condition with respect kas
p(b) = p(b + o), which can either be ignored since the producer hits the land boundary
at zero, or we can set(0) = «/(I — 2), alteringp on a set of measure zero.

Turning next to second-order conditions for the firm, notice first that if the firm uses a
parcel of any size, it is indifferent about its location, so it will choose one of the cheapest
parcels, and0, o) is among these. The first-order condition with respeet twill imply
that it will chooses = 1. Beyond this, up te- = //2, the marginal cost of land exceeds the
marginal benefit net of labor cost. If the firm can make higher profits from expanding the
scale of its operations beyond 1, then given the production function and the price density,
it will make higher profits whew = 0 ando = [. Profits from such a production plan are
given by

I
Ig.1_f_w.l—z.a~/1/(x—l)dm(x). (10)
1/2

17 This reflects the location independence of the production function.
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Profits from the equilibrium production plan are given by

l

ﬁ—f—w—aofl/(x—l)dm(x). (12)

-1

Following some calculations, it can be shown that (11) always exceeds (10}-ifl)/
(—21<2-In(2)+In[( — 1)/ — 2)] or, as assumed above; 2.87.

Finally, it is necessary to show that (11) is non-negative, in order to ensure that the
producer will not exit. Again, following some calculations, the assumption yhat
a/ll =2]—a-In[(l —1)/( — 2)] implies that (11) is always non-negativer

A.2. Parameter restrictions for discontinuous equilibrium price densities

$ala,l) =a-[1/(0—-2) -1/ - D],
Bi(a,)=a/(l-2)+a/(—-1)+2a-In[(-2)/(/2-D)],
(e, )=2-a[1/(—-2)—1/1].

Proof of Theorem 2. Let p(x) =a/(l —x — 1) for 1 <x <1/2, p(x) = a/(x — 1) for
[—1>x>1/2, px)=a/(l -1 for0<x <1, p(x)=a/(l —1) forl —1<x <,
b=0,0=1,qg=1,z=8—f,a=1,s=1—-1,0=[1], w=p8—a/( — 2),
a=B—f—-w—a/(l—-1D,c=w—{a/(U—21) + 2« In[(—2)/(/2—-1)]} (which is
non-negative by the assumption gn andc, = 2«/(I — 1)+ 2 -In[({ —2)/(/2—1)]+ 7.
We claim that this is an equilibrium. Figure 2 provides a sketch of the price density.
First, we verify that this is indeed a feasible allocation. To verify (3), note that
commuting cost is zero in this allocation and calculate:

o -2 200 1-2
c+cL=w—(m+2a~lnl/2_1>+m+2a'|nl/2_1+,3—f
o
—w—
=B-f=z

Verification of Egs. (4) and (5) is obvious. Finally, note tii@t1), [1,/) is indeed a
partition of X, so (6) holds.

Regarding the equilibrium conditions (7)—(9), (7) can be verified simply by calculating
the total area under the price density,/?2 — 1) + 2« - In[(/ — 2)/(I/2 — 1)], and adding
to it profits .

As the reader might suspect, the remainder of the proof that the specified discontinuous
rent density and allocation is in fact an equilibrium is quite analogous to the proof for
continuous equilibrium rent densities, so we shall not bother to repeat it here. The proof
that equilibrium profits are larger than profits using all land involves solving a quadratic
equation, the largest root of which is approximately 3.19.
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A.3. Parameter restrictions for two producers

Let(c’,s’) solve max s u(c, s) subjecttac+ p's < w'forw’ = (8+ f/(41 — I1)))/(1+
I/(I—=I)andp' =B+ /(41 — 1)+ I —Dt. Letu* =u(B+ f/(41 = 1)), I - D)/I).
Then specify

Ezmin{ﬁ_i_w_ <1_Ii>(l_l)t’

flu/@n—1/414—1-1s)
(-DHU -1 }

and

E:max{ f@11-1) A e S }
(—-DUI -1t I 2 Cy(s',u)

0(,1,8, f,t) =B+ f/[4d — )] + (I — L)¢t. The expressions are positive> 0 due to
the assumption oh 6 > 0 by the assumption oii/8. ¢ > 0 becausé < (I — I)/I. To
see this, consider the first expression in the definitioh ¢f is less than! — I)/I due to
the assumptions oh, [ and f/t < (16/9)1. The second expression is obviously less than
(I-1D)/I.

Proof of Theorem 3. We begin by fixingw, the wage rate, if0, 8 + f/[4( — D]].
Apply Proposition 4 of Berliant and Fujita [9] to the exchange economy where consumers
i =1,...,1 have an endowment of consumption goedand land is limited to the
interval(/ + 1, 21], to obtain an equilibrium price densipy, (x), wherep,, (2!) is uniquely
determined (and is the same for all equilibria). Using the assumption that land is a
normal good,p,, (2!) is increasing inw. Using upper hemi-continuity of the equilibrium
correspondence of the exchange economy jrp,,(2!) is continuous inw. We want to
solve

f l/@r—1/4
,B—W—Z—Pw(z)*'f'l_i]—
on 0< w < B+ f/[4( — I)]. This will be the zero-profit condition for the firms (with
pw(@) — f[l1/(2I) — 1/4]/( — I) representing rent).
As w tends to zerop,(2]) tends to zero, so the left-hand side of (12) tends to
B+ f/14( — I)], which is positive by assumption édnNote that atv = g + f/[4( — 1)],
the left-hand side is-pg+ r/1a0—1y;(20), which is non-positive. By the intermediate value
theorem, there is a@* solving the equation.
Define p = p,+. Mirror the allocation on the intervaD, / — I). The allocations on the
intervals(—2/, —I — I) and ([ + I, 0) are defined analogously. L& = 1 andQ? =0
if i <2I.LetQl=0andQ?=1ifi > 2I.
Forl—I <x <I+1,definep(x) = p2l)— f[i/(2I)—1/4]/(— I). The price density
on the firm’s parcel is less than the lowest price on any consumer’s parcel.
For0< x <1 —1I, definep(x) = p(2l — x). For—21 < x <0, definep(x) = p(—x).

0 (12)
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Letb1=1—1,bo=—-1—1. FOI’j:l,Z'etO’j:2],qj=2],zj'=21,3—f,7'[j=0.
For consumers residing in the internah- 1, 2/),
a;+s;
ci=w"— / px)dm(x)—t-(a; —1—1)>0
a;
by construction of the exchange economy allocations. The consumption of other consumers
is defined analogously; = [312, p(x)dm(x) > 0.
We claim that this is an equilibrium. First we must prove that the price density on the
firm’s parcel is non-negative (this also ensure$: 0). This is tantamount to a lower bound
on p(2l), the minimal willingness to pay for land in the exchange economy equilibrium
on the interval(/ + I, 2[]. The vehicle will be the assumption on the marginal rate of
substitution, but its application requires< s andcy > ¢, where the parcel front locations
areai < a; < ay. Using the assumptionthatlandisa normalgaoed; --- <s; <--- < sy,
c1>=--->c¢ =--- 2= cy, moreover, the rent density is constant on the first parcel and
decreases byacross every other parcel; see Berliant and Fujita [9]. We will also use two
upper bounds. When all = (I — I)/1, an upper bound for rent ot + 1, 2/] is obtained,
namely,

-Ded—-10) A-Det(d—-1) {1
—p@hi -1+ Y= 1)(1+11/2)t(1 -

and transport cost ofd + 1, 2/] is maximal, namely,
td=1) tI-1D1-1) t(I-DII—1)
T I - 21 '
Now suppose, to the contrary, that the price density on the firm’s parcel is negative, then
p@) < fll1/@I)—1/4]/({ —I) and by Eq. (12)w* > B — f/(2I). Subtracting the upper
bounds for rent and transport cost, a lower bound for mean consumption is

foop@d-0) d-DHA+DU-Dt
21 I 12
f 1/@21)—1/4 1 _
>ﬁ—z—f‘f—<1—ﬁ)(l—”l>a
by definition ofc. It follows thatcy > ¢. Next we proves; <5.

For this purpose we first establish a lower bound forNotice that from Eg. (12),
B+ f/Al—-D) =B~ f/@D + fll/2]) = 1/4]/( — I) = w + p(2]). Also, [w >
p2h({ — I), since all land must be purchased, p@/) < Iw/(l — I). Substituting,
B+ f/A4l—-D) <w@+1/(I—-1)). Hencew > w’. Also from Eqg. (12),p(2]) <
B+ f/(4( — I)). Hence the price paid by consumer 1 for landpi@l) + (I — 1)t <
B+ f/(4(I — 1)+ (I — 1t = p'. Since land is a normal good, > w’ andp(2]) + (I —
Dr < p'yields; > 5.

Denote the equilibrium level of utility for all consumers byBy assumption-Cs (s, u)
is convex, hence’ (s, u) is concave and’y(s, ) iS nonincreasing irs, so that the

p2h(I —1)+

B
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mean value theorem impli&g; (s2, u) — Cs(s1, u) < Cys(s’, u)(s2 — s1). But the left-hand
side of this inequality ig, the drop in rent across the parcel of consumer 2. It follows
thatsy — s1 > 1/Css(s',u) =1/ Cys (s, u*) Whereu* = u(B + f/A1—=1),( —1)/I) >
u(c1, s1), using the assumption th@t is nondecreasing im. In fact, this argument applies
to every pair of adjacent consumers (there is nothing special about consumers 1 and 2).
Thus,s1 <s; — (i — D)1/Cys(s’,u*), s0Isy <1 — 1 — I(I — 1Dt/(2Cs(s", u*)); thus
s1< (U =D)/1 =T —Dt/(2Cs(s", u™)).

Consumer 1 pays rent densip(2/)+ (I — 1)t. This price equals the consumer’s
marginal willingness to pay for land which exceetld, [, 8, f.t) =8 — f/[4(0 — D] +
(I — 1)t by assumption on the marginal rate of substitution, normality of both goods.
Subtracting ! — 1)t,

[ _farie f  _fu+dH o f
al-1 7~ I al-1)7" 212 410 —-1)
L
“210-1) 41-1)
by assumption ory/B8, I andl, respectively. This contradicts the presumption and thus
completes the proof of the nonnegativity pfx).

Equation (3) is verified by substitution of the expressions above for consumption
and output (note that the transportation cost terms cancel). Equations (4)—(7) hold by
construction.

Next, we argue that the allocation we have specified solves the consumers’ problems (1).
By construction of the exchange economy equilibrium, no consumer has an incentive to
relocate within the intervals occupied by the consumers. The land occupied by producers
is less expensive than any land occupied by consumers, but always requires more transport
cost. Consider a consumer par¢e) a + s) containing part of the land parcel of the firm
located atl —1,1+ I). We may assume that+ s/2 <!. Forifa +s/2 > [, then we can
flip the consumer parcel symmetrically abdusave on commuting cost, and obtain the
same quantity of land.

First we consider the caset+ s > [ + 1. The idea is to shift the parcel towards the left.
This saves commuting cost. It also saves rent, as long@s< p(a + s). By symmetry
about/, rent densityp(a + s) is also attained at/2- (a + s), buta is to the left of this
point, sincexz + s/2 < [. The next point leftward where rent densjiya + s) is attained
is—2/ 4 (a + 5), by symmetry about 0. As long as< 2/, a is to the right of—2/ + (a + )
and we can shift the parcel towards the left, saving both commuting cost and sent2If
then sincez + 5/2 < [, a < 0; now we will show that the utility associated with such a
big parcel is below the equilibrium utility level of consumers. We distinguish two sub-
cases. Call the rightmost consumer commuting to the left producer congurnmethe
first sub-caseg < a;. The encroaching consumer is spending at least as much on land as
any consumer in equilibrium, is consuming at least as much land, and is facing the same
marginal commuting cost. Therefore, using strict quasi-concavity, the marginal willingness
to pay of this encroaching consumer for land to the left;afs no more than the marginal
willingness to pay of consumér So parcels containing points to the leftgfwill yield
lower utility. Now consider the second sub-casg< a < 0. By shifting the parcel to
the left, towards the left producer, the quantity of land consumed is the same, and the

p2) = p—
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savings in commuting cost per unit distance) exceed the additional rerity) — p(a +s).

This inequality follows from three facts. First, since we are in the declining rent region,
p(a) < p(a;). Secondp(a + s) > p(0), the minimum consumer rent density (recall that
a+s>1+1,s0a+ s isinaconsumer’s parcel). Thirg(a;) — p(0) =¢, the first-order
condition of consumeir with respect ta:. Thus, a shift to the left increases utility and we
conclude that it suffices to considers <[ + 1.

Summarizing, ruling out < g; as before, and using the fact that very small consumer
parcels will only be located on the left part of the firm's pargél—17,! + I), to save
commuting cost, the only choices that might be optimizing and yielding higher utility than
equilibrium utility for any consumer are:

for s < 21 (the size of the firm's parcel) (I —1,1—1+y),
for2l <s<Il+1+s;(ora; <a<l-1), (a,l+]1).

In the first case, by assumptidnz 212+1,s < 21 < (I—1)/I <s;. If the encroaching
consumer has a greater utility level than consuménen we reduce his composite good
consumption until the utility levels are the same. By strict quasi-concavity, the marginal
willingness to pay for land is greater for the encroaching consumer. By the first order
conditions the rent density he faces on the right hand side of his parcel must exceed that of
consumet. This contradicts the construction of the rent schedule.

In the second case the parcel(is/ + I). If a > 0, let us compare this parcel to an
alternative parcela — 21,1 — I), that is the same size but just does not encroach on the
producer. Since: > 0 and the alternative parcel does not encroach, the consumer saves
at least(/ — It in commuting cost by moving to the alternative, which is adjacent to a
producer. An upper bound on the additional cost of land is the difference between the
maximal and minimal prices of land over a parcel of side 2/ (I — 1)t + f(I —1/2)/

(I —1I). Thisis less thail — I)z, by the assumptions ofiand: (yielding f/¢ < (16/9)1)

and on/ (the lower bound is a worst case) ahdSummarizing, the alternative parcel (that
does not encroach on a producen)— 21,1 — I), is the same size as the original parcel,
(a,l+ 1), and after paying for commuting cost, there is at least as much consumption good
remaining. Thus, the only parcel choices that might be optimizing and yielding higher
utility than equilibrium utility are(a, [ + I) wherea; < a <0.

If a; < a <0, then the amount of land purchased excdedg, hences;, and therefore
the marginal willingness to pay for land is less tha(P/). Hence the consumer must
therefore be willing to purchase more land, beyond the point 0, only if

-1 I+1 -1 I+1

/P(x)dm(X)+/p(X)dm(x)</p(ZZ)dm(X)Jr/p(Zl)dm(X),
0 -1 0 -1
or
e 1/(2I) — 1/4
[ 1ot - p@]ano <aiy - HERSEE, (13)

0

Next, we contradict this inequality by using our assumptions. In the proof of the non-
negativity of the firms’s rent the combinatien > ¢ ands; < s was shown to contradict
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the assumption on the marginal rate of substitution. Two possibilities remais:s
orcy <c. If s1>5, thensy > 4f[1/2I) — 1/4]/[( + DI — D¢], sos1(I — 1)t >
A4f11/20) —1/4)/(A 4+ I). Now so(I — 2)t > s1(I — 2)t, ..., s;—1t > s1t. Summing these
inequalities and using+2+---+1 —1= (I —1)I/2, we obtain

-1

[ 176 pen]ames) > LD gy D18
0

2 I+1

’

contradicting inequality (13).

Now consider the remaining case,< ¢ ands; < 5. Use the lower bounds for transport
costand rent o0,/ — I): ts1+---+t(I — Ds1=t(I — DIs1/2 andp2))( — I) +
(I —=Dits1+---+ts1=p2HI—-1)+ (I —1)Its1/2, respectively. Then using (the
consumption of the first consumer) as a lower bound on the consumption on the interval
[0,]—D,c1+p@H(I—D+{T—-DIts1 <Iw*=1Ic1+ I[p(2)+ (I — D)t]s1. Hence,
using the non-negativity of the firms renty > [p(2))(I — I) — Ip(2)s1]/(I — 1) >
fll/@n —1/414 -1 —I5)/[(I + I)(I — )] > ¢ by definition ofc, contradicting:; < c.

Thus, when transport costs are taken into account, the willingness to pay of a consumer
for any land occupied by a producer falls short of the cost. A consumer purchasing land
used by a producer will have utility lower than a consumer farthest away from a producer.
Since all consumers are at the same utility level in equilibrium, such a purchase would
reduce the utility level of the consumer, and therefore will not be made.

With regard to the firms, notice that optimization will imply that the labor input quantity
will be set equal to the land input quantity, and optimization problem (2) reduces to:

b+o

r?axﬁ.cr—f— / p(x)dm(x) — w* - o.
’ b

The first-order condition with respect tois 8 — w* = p(b + o) € [p(), p( + D)].
Marginal revenue net of labor cost equals the marginal cost of land. Since there is a
discontinuity in the price of land, this net marginal revenue need only be between the
bounds of the discontinuity* was chosen to satisfy this conditionfar=1—1, 01 = 21,
bp = —1 — 1, 02 = 2I. The first-order condition with respectiads p(b) = p(b + o); this
is fulfilled by symmetry. Equilibrium profits are zero by constructionudf see Eq. (12).

Turning next to second-order conditions for the firm, notice first that if the firm uses a
parcel of any size, it is indifferent about its location, so it will choose one of the cheapest
parcels. Folo < 21, these are contained ith1, b1 + 01), (b2, b2 + o02). The first-order
condition with respect te- will imply that it will chooseo = 21. If it occupies a parcel
at an extreme oK ando is slightly larger than 2, then the cost of this parcel is higher
than the cost of a similarly slight extension(®f;, b1 + o1) or (b2, b2 + 02). If the firm can
make higher profits from expanding the scale of its operations beybnith@n given the
production function and the price density, it will make still higher profits whea —2/
ando =4l.
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Profits from such a production plan are given by
21

481 — f —w* -4l — / p(x)dm(x). (14)
2

Profits from the equilibrium production plan are zero by construction®ofUsing this
by substituting the definition ofv™ given by Eq. (12) into Eq. (14), after some tedious
calculations, non-positivity of (14) is equivalent fé”[p(x) — p(2))dm(x) > 0. The
integrand is non-negative by constructior

Proof of Theorem 4. Take an equilibrium allocation
[(ci,ai. si, O0Nl_1. e, (zj,bj,0;, q,/)le]

that is symmetric in production, and suppose that it is Pareto dominated by another feasible
allocation

[(c} .57, Oy et (2607 45) o),

with 2’ > 0V j. Sou(c}, s}) > u(c;, s;) for alli ande| > ci, with strict inequality holding
for at feast one relation.

First 18 we assert that without loss of generality, we can assume that the land parcels of
consumers commuting to a firm in the Pareto dominating allocation form a connected set
in combination with that firm’s parcel. For if not, we can switch the land parcels around so
that they do form a connected set, and create a Pareto improvement by reducing aggregate
commuting cost and distributing the surplus composite commaodity to the landlord.

Second, we argue that without loss of generality, the Pareto dominating allocation has
the same number of consumers commuting to each firm from each side or direction. By the
first condition defining an allocation that is symmetric in productiohii2J) is integer. All
consumers commute (see footnote 6). It follows that the difference between the maximum
and minimum number of consumers commuting to any firm from one side at the Pareto
dominating allocationi and n respectively, must be more than one. (The proof is by
contradiction. There areJ/2clusters of consumers (to the left and to the right of the
firms). Let the number of clusters with consumers b&v, 0 < N < 2J. Now suppose
n=n+1.Thenl =nN+ (n+1)(2J — N) = (n+ 1)2J — N. Dividing by 2/ we obtain
thatN/(2J) is integer, contradicting & N < 2J.) Take the closest consumer, consumer 1,
commuting to a firm from a side with consumers commuting to the firm. Move this
consumer, retaining their land and composite good consumption, to the side of a firm with
n consumers commuting to it. Place this consumer so that it is the agent adjacent to the
firm on the side withh consumers commuting to it. Shift agents (without changing their
order) so that material balance is maintained in the land market.

We claim that this rearrangement of consumers creates a Pareto improvement. The
reason is as follows. Removing the first consumer from the sidemdttinsumers reduces

18 At this juncture, it is important to note that the concept of “Pareto optimality Witictive firms” implies
that no firm is shut down in the Pareto dominating allocation.
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total commuting cost from that side loiy — 1) - 57 - . Placing the consumer in the side with
n commuters increases commuting costiys; - t, wheren < 7 — 1. Thus, a surplus of
composite good is created, and this can be given to the landlord.

Sincel/(2J) is integer, it must be that each firm has the same number of consumers
commuting to it from each side. From the form of the production function, we know that
the production plans of all firms must therefore be identical, since labor usage is identical
(and equal td /J).

Third, we claim that without loss of generality, the Pareto improving allocation has the
property that the consumers adjacent to a firm all have the same allocations of consumption
good and land, the consumers second closest to a firm all have the same allocations, and
so forth. For suppose that this were not the case. Take the set of all of the consumers
who arei people from the firm to which they are commuting. Take the average of their
allocations and give each of them the average allocation. Do this separately for each set of
consumers who arepeople from each firm. This new, average allocation is feasible since
the original allocation is feasible. For instance, aggregate commuting cost is the same in
both the original and averaged allocations. Moreover, since utility is strictly quasi-concave,
the original allocation Pareto dominates the equilibrium allocation, and the equilibrium
allocation features equal utility levels for all consumers (see footnote 6), the average
allocation also Pareto dominates the equilibrium allocation.

An immediate implication is that the Pareto dominating allocation is, without loss
of generality, symmetric in production. Since the equilibrium allocation is symmetric in
production (by assumption), the locations of producers and their land usage are the same in
both the equilibrium allocation and the Pareto dominating allocdfid@ius, the difference
boils down to a pure exchange economy where the central business districts are the firms
and the consumers are each endowed withnits of consumption good. From Berliant
and Fujita [9, Proposition 2], given a fixed production sector, the equilibrium allocation is
efficient. This contradicts the presumed existence of a Pareto dominating allocation. So the
hypothesis is false, and the equilibrium allocation is Pareto optintal.
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